System Architecture

• Topics:

- Design Philosophy
 - how to go about thinking of architecture?
 - or, what drives the architecture design?
 - some examples
- Internet architecture
 - history and evolution
 - current design: modular architecture
 - new challanges: security, …
- Interplay between theory & architecture design
 - digital communication and information theory
 - parallel programming and von Neumann bridge

Architecture

- Webster interpretation
 - Architecture = the art or science of building (system)
- A system design philosophy
 - List desired goals, properties, functional utility of the system in the order of importance
 - Derive design implications of the desired goals/properties/utility of system
 - Search for means/methods/technology for designing appropriate architecture
 - Repeat the above steps until one finds feasible, economical architecture that performs as desired
- → This philosophy leads to "an art of building system"
 - Next, we see some examples

An Example

- Consider the example of Telephone network
- Here is list of desired properties/utilities and their implications
 - Functionality: allow for real-time voice communication
 - → need a very fast communication technology
 - Privacy: conversation should be private
 - → communication should be encrypted or should happen over secure links
 - Accountability: resources utilized must be accountable
 - Pricing: cost must be proportional to usage
 - → basic communication unit should be a *phone call*
 - Economical: system must be affordable
 - Scalability: should be able to accommodate growing demand
 - Robustness: must operate even when few components fail

. . .

Other Examples

• Engineered systems

- Airline system
 - Primary purpose: safe, efficient and economical commuting
 - → Implications: regulations on checking of planes, design of optimized routes and schedules, inventory control, human resource, etc.
- Energy distribution system
 - Primary purpose: efficient, ubiquitous and economical energy distribution
 - → Implications: design of optimized power-grid, set up of energy exchanges or markets, placement of energy plants, regulations on pricing energy resource etc.

Internet

- Next, we will study the design of Internet in detail
- We will talk about
 - A brief history of Internet
 - The utility or goals of Internet
 - initial goals
 - \rightarrow their implications and current design
 - Current challenges or new goals
 - network security, etc.

Brief History of Internet

- The original Internet project was started in the late 1970s
 - It was a DARPA funded project known as ARPANET
- Motivations behind the ARPANET project
 - To develop an effective architecture for multiplexed utilization of
 - existing interconnected, heterogeneous, independent and possible unreliable networks
 - Specifically, allow for access of ARPANET server
 - to field agent via ARPA radio network
- The Internet or ARPANET
 - Could have been custom designed for the above purpose
 - But, fortunately that was not the case
 - allowing for a general purpose network design
- Next, we see goals considered by the architects of ARPANET or Internet

Internet: Original Goals

- In addition to primary goal of ARPANET, the following were the goals considered by the architects to design first generation of Internet
 - Internet communication must continue despite loss of network at gateways
 - Internet must support multiple types of communications services
 - Internet architecture must accommodate a variety of networks operating independently
 - Internet arch. must permit distributed resource management
 - Internet architecture must be cost effective
 - Internet architecture must permit host attachment with low level of effort
 - The resources used in architecture must be accountable

Reference

o "The Design Philosophy of DARPA Internet Protocols," D. Clark.

- Next, we study the design implications of these goals
- The most important design goal is to allow
 - Multiplexing between hetergeneous independent networks
 - → packet switching architecture, where data is communicated into independent units called data-grams
 - Subsequently, networks must be interconnected via packet switches or gateways.
- In summary, structure of Internet should be such that
 - Packet-switched commication between heterogeneous networks
 - Different networks are connected via packet communication processors, called gateways
 - which implement store and forward packet routing algorithms
- Now, the other goals

- Goal: survivability against failures
 - In the event of failure, the ongoing communications should resume from the point of failure after "re-configuration"
 - → Maintain "state information" that should not be lost
- Implication:
 - Network is heterogeneous
 - → Maintain "state information" at the end host that are communicating
 - that is, a state-free network
- An example of state maintained as end-hosts
 - Connection information and packet numbers

- Goal: support multiple types of services
 - Different services require different level of reliability, delay, jitter, etc.
 - for example, voice data versus file transfer
- Implication:
 - To support multiple services, need multi-levels of transport protocols
 - → architecture must support simultaneous multiple transport protocols
- Current example of transport protocols
 - TCP: reliable transport
 - UDP: low-delay transport

- Goal: design should work for heterogeneous networks
 - Allow for incorporation and utilization of variety of networks
 - For example, low-speed dialup versus high-speed cable network

o Implication:

- Architecture must make minimal set of assumptions about underlying network
- Architecture must allow for simple interface between underlying physical network and higher-level functionality

Current example

- All networks should provide interface for packet- or datagram-level communication
- Network protocols should be utilizing only such interfaces
- → Network protocol design is independent of underlying network

- Other goals
 - Distributed management
 - → network protocols must utilize only "local" information
 - Efficient utilization
 - → design overhead must be minimal
 - → protocols must provide high-performance
 - Economical
 - → network should be buildable with "cheap" technology
 - → network should be available to wide range of society
 - Accountability
 - → resource utilization should be accountable

6.976/ESD.937

Design Implications: Summary

- In summary, the architecture should be
 - Packet switched, i.e.
 - packet or datagram is building block of communication
 - o End-hosts should maintain connection information,
 - Different types of network should support packet level transmission and provide universal interface to other network protocols
 - Provision of multi-level of transports
 - Heterogeneous networks interconnected via packet processors or gateways
 - Protocols must utilize only local information, such as
 - routing based on local topological and addressing information
- → This naturally leads to layered Internet architecture

Layered Architecture

- Basic principle of layered architecture
 - Overall function is divided into layers of "independent" modules
 - Different modules interact via pre-decided interface (inputs & outputs)
 - Details of one module is of no interest to the other module
 - a module has effect on other only via interface
- Concept of layered architecture or modularity is as old as "engineering"
 - In the context of algorithm design
 - known as divide and conquer
 - In the context of optimization
 - known as dual decomposition
 - \rightarrow We'll use these for architecture design
- Next, we describe layered Internet architecture
 - Reference: Chapter 1.3 of Data Networks, by Bertsekas-Gallager

Layered Architecture

Layered Architecture: An Example

6.976/ESD.937

Layered Architecture

- General guidelines for modular design
 - More modules give independence of design
 - → better for supporting multiple types of services, robustness, interoperability, etc.
 - However, more modules may impose restriction on functionality of architecture
 - → a natural trade-off between functionality and design flexibility arises
- It is important to carefully select modules for desired flexibility and performance
 - We'll see how theory can help in choosing appropriate module
 - in the context of communication theory
 - in the context of parallel computation

Classification of Internet Protocols

- The essential Internet protocols are of two types
 - 1. Control protocols
 - related to what operation should be performed
 - e.g. how should data be routed
 - 2. Data protocols
 - related to actual data transfer
- The performance of Internet is affected mainly by control tasks
 - But, actual "work" is done by data tasks
- Treating them separately leads to better design
- This distinction is popularly called as
 - Control plane of Internet
 - Data plane of Internet
- We'll see this distinction more closely through the course

New Architectural Challenges

- As we've seen, architecture is the result of desired goals
 - → Newer goals will lead to changes
- Some new critical challenges
 - Quality-of-service (QoS)
 - → Refined feedback from network to end hosts
 - we'll see relation between feedback and the task of interest
 - control theory helps!
 - Network security
 - protection of Internet resources from malicious users
 - e.g. viruses and worms, denial-of-service attack, etc.
 - see a recent article in MIT Tech Review, "The Internet is Broken," by D. Talbot, Dec 05/Jan 06 issue, page 62–69.

6.976/ESD.937

Homework I

- Choose your favorite (complex) engineering system, different from the one covered in the class. Some examples are
 - Network of health care system
 - Network of railway system for Europe
 - Network of Postal system
 - Communication system for poor rural country
- Given this chosen system, carry out the following steps in detail
 - List the desired performance goals of the system
 - Derive implications of the goals on the system architecture
 - Sketch the details of system architecture using layering, etc.

6.976/ESD.937

References

- (1) Two papers
 - "The Design Philosophy of The DARPA Internet Protocols," by
 D. Clark
 - "Architectural Considerations for a New Generation of Protocols,,
 by D. Clark and D. L. Tennenhouse
- (2) Data Networks, by Bertsekas–Gallager
 - Chapter 1.3
- (3) Expository article
 - o MIT Tech Review, Dec 05/Jan 06 issue, article, p. 62-69