Routing

- Topics:
 - Definition
 - Architecture for routing
 - data plane algorithm
 - Current routing algorithm
 - control plane algorithm
 - Optimal routing algorithm
 - known algorithms and implementation issues
 - new solution
 - Routing mis-behavior: selfish routing
 - price of anarchy or how bad can it be?

Routing

Definition

- The task of determining how data should travel from its source to destination in the network so that
 - overall delay is minimized (or user utility is maximized), and
 - network resource utilization is maximized
- An example
 - Use of "MapQuest.com" to find "driving directions"
 - data plane algorithm
- Ideally, MapQuest.com should be designed so that
 - Traffic directions are created such that overall congestion on roads is minimized
 - Overall social satisfaction by using such directions is maximized
 - control plane algorithm

Routing

- Essential requirements for routing in a networks
 - Unique addressing mechanism in the network,
 - such as, street address
 - Network topology,
 - for example, road map
 - o Or, at least local directional information,
 - e.g. information of the form: left on Vassar St. from Main St.
 will connect it to Mass Ave

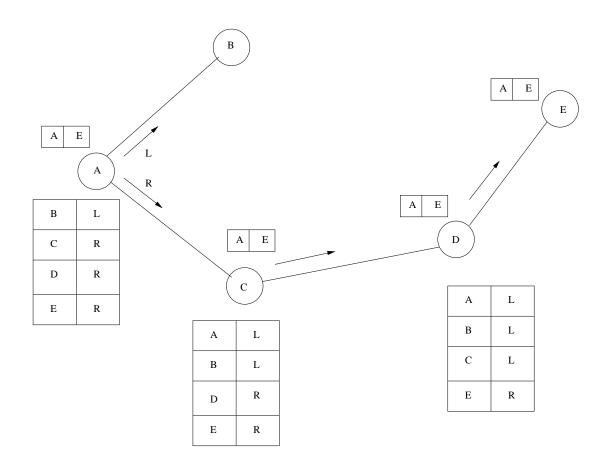
• Next, we'll consider Internet

Routing: Internet

Internet

- All nodes have unique IP address
 - allocated according to certain criteria, such as
 - all MIT IP address are of the form 128.31.*.*
- The topological information is stored in the form of "next-hop" information
 - routing-tables stored in local gateways
- When data needs to be routed from source to destination,
 - "network layer" takes care of routing
 - converts web address info IP, e.g.
 - www.yahoo.com \rightarrow 142.226.51
 - appends destination IP to packet
 - determines next-hop using routing information of gateway
 - intermediate gateways forward packet using it's destination
 IP and their routing table

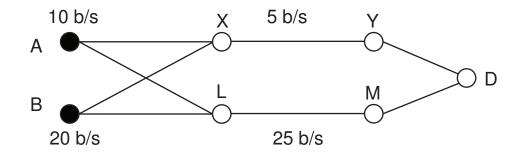
Example: Routing in Internet



An example of data routing in Internet using routing table informtion Q: How to configure these routing tables?

Routing: Control Algorithm

- The control part of routing is about configuring routing tables
- Given a network, traffic demands the routing determines
 - Network utilizatiton or throughput
 - Average delay or utility
- Example



Route 1:

A sends all data to D via X B sends all data to D via L Thput $= \frac{5+20}{10+20} = \frac{25}{30}$

Route 2:

A sends half-data to D via X and other half via L B sends all data to D via L Thput = 1

Routing: Control Algorithm

- Formally, the problem of routing is as follows:
 - Each gateway needs to decide what fraction of data destined for certain destination needs to go through which of its outgoing link
 - So as to maximize overall network through put and minimized end-to-end delay
 - The parameters of this problem are:
 - network topology and link capacities
 - traffic demand
 - Constraints: decision of routing must be done in distributed manner and should be robust against few failures
- Next, we'll see how to model the problem of routing
 - → It will lead to appropriate algorithm design

Routing: Problem Formulation

- Let nodes of network be numbered $1, \ldots, n$.
- Let $\mathcal{L} = \{(i, j) : 1 \leq i, j \leq n\}$ be set of all links
 - $\circ C_{ij}$ be capacity of link (i,j)
 - $\circ C_{ij} = 0$, if link (i, j) is not present
- Let $r_i(j)$ be rate at which data is generated at node i for node j.
- Let $\phi_{\ell i}(j)$ be fraction of data arriving at node ℓ , destined for node j, that is routed to node i.
- Let $t_i(j)$ be net data arriving at node i destined for j. These satisfy the following relation

$$t_i(j) = r_i(j) + \sum_{(\ell,i)\in\mathcal{L}} t_\ell(j)\phi_{\ell i}(j)$$
; for all i,j

Routing: Problem Formulation

• Let $F_{i\ell}$ rate at link $(i,\ell) \in \mathcal{L}$

$$F_{i\ell} = \sum_{k} t_k(k) \phi_{i\ell}(k)$$

- $D_{i\ell}(F_{i\ell})$: delay as func. of $F_{i\ell}$
 - Let it be convex, increasing, twice-differentiable

$$\circ D_{i\ell}(0) = 0 \; ; \quad D_{i\ell}(C_{i\ell}^+) = \infty$$

- In general, the delay can be replaced by appropriate utility function
- Given this setup, next we describe the question of optimal routing

Optimal Routing

Route-opt:

$$\min \sum_{(i,\ell)\in\mathcal{L}} D_{i\ell}(F_{i\ell})$$

subject to

$$F_{i\ell} = \sum_{k} t_k(k)\phi_{i\ell}(k) ;$$

$$t_k(j) = r_k(j) + \sum_{\ell} t_{\ell}(j)\phi_{\ell i}(j) ;$$

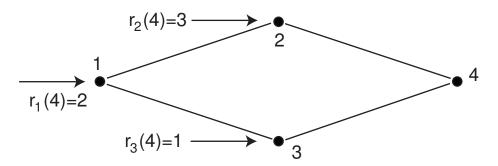
$$\phi_{\ell i}(j) \geq 0 , \text{ for all } i, j, \ell ;$$

$$\sum_{i} \phi_{\ell i}(j) = 1 , \text{ for all } \ell, j .$$

- An implicit constraint is $F_{ij} < C_{ij}$, as otherwise optimal cost will be ∞ .

 o If $r_i(j)$ are s.t. they can not be routed, then optimal cost will be ∞
- Before considering algorithms for Route-opt, let's look at an example.

Example: Route-opt



- Capacity of all links = 5
- ullet Delay function for all links, $D(x) = \frac{x}{5-x}$
- A feasible routing:

$$\phi_{12}(4) = 0.5$$
 ; $\phi_{13}(4) = 0.5$; $\phi_{34}(4) = 1$; $\phi_{24}(4) = 1$

$$\circ F_{12} = 1$$
 ; $F_{13} = 1$; $F_{24} = 4$; $F_{34} = 2$

Total delay

$$\frac{1}{5-1} + \frac{1}{5-1} + \frac{4}{5-4} + \frac{2}{5-2} \approx 5.17$$

Next, some algorithms

A Natural Heuristic

- Consider following heuristic for Route-opt
 - Assign weights to edges, were weight reflects delay
 - \circ An example, weight $=\frac{1}{\text{capacity}}$.
- Then, route with minimal delay between a pair of nodes corresponds to minimum weighted path (shortest path).
 - Routing algorithm is equivalent to finding shortest path between node-pairs
- Currently in the Internet
 - (A version of) Shortest path routing (OSPF) is used
 - Weights are based on certain heuristic utilizing observed link quality
- Next, we describe algorithms for finding shortest path

- Main idea:
 - o itreatively find shortest path between nodes
 - with paths of increasing length, starting with 1
- Algorithm: Find shortest path from node 1 to all nodes
 - 1. Initially, $P = \{1\}$, $D_1 = 0$, $D_j = d_{ij}$, $j \neq 1$ $[d_{ij}$: weight of edge (i, j); $d_{ij} = \infty$ if not connected]
 - 2. Find next closest node: find $i \notin P$ s.t.

$$D_i = \min_{j \notin P} D_j ;$$

Set $P = P \cup \{i\}$. If P contains all nodes, then STOP.

3. Update: For all $j \notin P$, set

$$D_j = \min[D_j, d_{ji} + D_i]$$

4. Go to (2)

- The Dijkstra's algorithm is totally distributed
 - It can also be implemented in parallel and
 - Does not require synchronization
- In the algorithm
 - $\circ D_j$ can be thought of as estimate of shortest path length between 1 and j during the course of algorithm
- The algorithm is one of the earliest example of graph algorithms
 - Reference: Chapter 5.2, Bertsekas and Gallager
- Next, we present the proof of correctness of algorithm

- We first state the following two properties of the Algorithm
 - \circ Claim 1. $D_i \leq D_j \quad \forall i \in P ; \quad j \notin P$
 - \circ Claim 2. D_j is, for each j, the shortest distance between j and 1, using paths whose nodes all belong to P (except, possibly, j)
- Given the above two properties
 - \circ When algorithm stops, the shortest path lengths must be equal to D_j , for all j
 - → That is, algorithm finds the shortest path as desired
- Next, we prove these two claims.
- Proof of Claim 1
 - The proof follows by simple Induction
 - initially Claim 1 is true, and
 - always remains true under the update rule

Proof of Claim 2

- We will prove by Induction
- \circ Initally, $P = \{1\}$ and holds for $D_1 = 0$.
- Induction hypothesis
 - let it be true for all nodes till some interation
- \circ Next, node i is added to P
 - let D_k be distances of nodes before i was added
 - let D'_k be distances of nodes after i was added
- Note that Claim 2 holds for all $j \in P$ from induction hypothesis as their $D_j = D'_j$.
- \circ For j=i, $D_i=D_i'$ satisfies the desired claim from induction hypothesis as well.

6.976/ESD.937

- Let $j \notin P \cup \{i\}$. Let \hat{D}_j be shortest distance from j to 1 along path containing nodes in $P \cup \{i\}$.
 - \circ Let this path have arc (j, k); $k \in P \cup \{i\}$
 - $\hat{D}_j = \min_{k \in P \cup \{i\}} [d_{jk} + D_k] \quad \text{[induction hypothesis]}$ $= \min \left[\min_{k \in P} [d_{jk} + D_k], d_{ji} + D_i \right]$
 - \circ By induction hypothesis, $D_j = \min_{k \in P} [d_{jk} + D_k]$
 - o Hence, $D_j = \min[D_j, d_{ji} + D_i]$ = $D_i'(\text{by update of algorithm})$
- This completes the proof of Claim 2.

Other Algorithms

- Another popular algorithm
 - Bellman–Ford algorithm based on standard "Dynamic Programming"
- The Dijkstra's algorithm has very efficient distributed implementation
 - → Hence, popular
- Current Internet protocols use some version of Dijkstra's algorithm
- Unfortunately, this algorithm does not perform very well
 - Easy to construct examples
 - Poor performance is often experienced in practice

Optimal Routing

- Why heuristic based on shortest path?
 - o Poor in performance, but
 - Easy to implement, distributed
 - Robust against failures in network
 - Quickly adaptive
 - More importantly, allows heterogeneous networks (ISP) to operate without sharing "sensitive" information
- We'll look at the Route-opt problem
 - First, we'll see a non-implementable solution
 - Then, look for an implementable solution
 - very similar to Dijkstra's algorithm

6.976/ESD.937

Route-opt

- Convex optimization (minimization) problem
 - Convex cost function
 - Convex constraint set
 - → Known-standard methods to solve the problem iteratively
- Let's look at a simple method called *Descent* method
 - Essentially, it changes the solution iterative so that
 - Solution remains feasible and the cost decreases
- Later, we'll see a simple, distributed algorithm
 - An extension of descent method
 - Subgradient method via dual decomposition

Descent Method

Main steps:

- 1. Start with any initial feasible solution
- 2. Given current solution, find increment in solution
 - that will retain feasibility of solution and decrease cost.
- 3. Repeat 2 until convergence.

• Questions:

- A. How to find feasible solution initially?
- B. What guarantees existence of a feasible "descent" direction?
- C. How to find feasible descent direction?
- D. What guarantees that convergent point is optional solution?
- Next, we answer these questions

A. Feasible Solution

- It is sufficient to know the method to route data destined for one node
 - Repeating it for all destinations gives a complete solution
- Parameters:
 - $\circ R_{ au}$: residual graph at end of iteration au
 - Initially, $R_0 = G$ (n nodes, \mathcal{L} links, C_{ij} capacities)
 - $-R_{\tau}$ changes over time only in capacities
 - \circ Traffic demands $r_1(n), \ldots, r_{n-1}(n)$
- Find-Path $(R_1, (i, n))$
 - \circ Finds a path from $i \to n$ in R with some positive capacity
 - \circ It identifies path and capacity that it has between $i \rightarrow n$
 - An important building block of method for finding feasible flow

A. Feasible Solution

- (i) Initially: $\tau = 0$, $R_0 = G$, i = 1 and $r = r_1(n)$
- (iii) Find-path $\Big(R_{ au},(i,n)\Big)$ returns path $(i,a_1,\ldots,a_{\ell_1},n)$ with capacity $c_{ au}$

$$\circ q = (r - c_{\tau})^{+}$$

- \circ Update R_{τ} to obtain $R_{\tau+1}$ as follows:
 - \circ Reduce capacities on edges $(i, a_1), (a_1, a_2), \ldots, (a_{\ell 1} n)$ by q
 - Increase link capacities on edges

$$(a_1,i),(a_2,a_1),(a_3,a_2),\ldots,(n_1a_\ell)$$
 by a

(c)
$$\tau = \tau + 1$$
, $i = i + 1$

- (iv) If i > n then STOP; else set $r = r_i(n)$
- (v) If r > 0, go to (iii); else set i = i + 1, go to (iv)

A'. Find-Path

- Essentially, probe all directions in given graph in an intelligent way!
- Find-Path (R, (i, n)):

(finds path in graph R from i to n with positive capacity)

- 1. Initially $N = \{i\}$; $c(i) = \infty$; P = empty
- 2. (Add new node)
 - \circ Find $j \notin N$ s.t. $\exists k \in N$ with $c_{kj} > 0$
 - \circ Add $P = P \cup \{(k_{ij})\}$; $N = N \cup \{j\}$
 - $\circ \mathsf{Set}\ c(j) = \min\{c(k), c_{kj}\}\$
- 3. If $n \in N$ then STOP
- 4. Path found is of capacity c(n) with edge in P (there is such a unique path)

B. Existence of Descent Direction

- ullet Recall that a feasible routing is characterized by $\phi=(\phi_{k\ell})$
 - \circ By definition, set of all feasible ϕ is convex
- Claim. ϕ is optimal \Leftrightarrow No feasible descent direction.
- Proof.
 - \circ First, direction (\Rightarrow) which we prove by contradiction
 - let ϕ be optimal and \exists a feasible decent direction
 - that is, there exists $\Delta \phi$ such that
 - $-\phi + \theta \Delta \phi$ is feasible and
 - $-D(\phi + \theta \Delta \phi) < D(\phi)$ for some $\theta > 0$
 - this contradicts assumption of ϕ being optimal
 - \circ Thus ϕ is optimal then no feasible descent direction

B. Existence of Descent Direction

- Next, we prove the other direction (⇐):
 - \circ Equivalently, if ϕ is not optimal then
 - there exists a feasible descent direction
- ullet Let ϕ not be optimal
 - \circ That is, there is $\hat{\phi}$ feasible s.t. $D(\hat{\phi}) < D(\phi)$
- Let

$$\phi_{\theta} = \phi + \theta(\hat{\phi} - \phi) = (1 - \theta)\phi + \theta\hat{\phi} \quad ; \quad \theta \in (0, 1)$$

ullet Then, ϕ_{θ} is feasible due to convexity of feasible set.

$$D(\phi_{\theta}) \le \theta D(\hat{\phi}) + (1 - \theta)D(\phi) < D(\phi) \quad ; \quad \theta \in (0, 1)$$

- Thus, $(\hat{\phi} \phi)$ is a feasible descent direction.
- \bullet Thus, ϕ not opt. \Rightarrow existence of feasible descent direction.
- This complete the proof of our claim □

C. Finding Descent Direction

• First, suppose we are in unconstrained set up

$$\circ \ \mathsf{Let} \ \nabla D(\phi) = \left[\frac{\partial D(\phi)}{\partial \phi_{k\ell}} \right]_{k,\ell}^T$$

- o Then
- Claim. $-\nabla D(\phi)$ is a descent direction.
- Proof.
 - \circ D is assumed to be a strictly convex, twice differentialable function that is, Hessian of D is strictly positive
 - \circ Let, $\phi(t) = \phi t \nabla D(\phi)$
 - By Taylor's expansion,

$$D\Big(\phi(t)\Big) = D(\phi) + t\Big(\phi(t) - \phi\Big)^T \nabla D(\phi) + \frac{t^2}{2} \Big(\phi(t) - \phi\Big)^T \nabla^2 D\Big(\phi(s)\Big) \Big(\phi(t) - \phi\Big) \ ;$$
 for some $s \in (0,t)$.

C. Finding Descent Direction

$$\circ \ \mathsf{Let} \ \nabla^2 D\Big(\phi(s)\Big) \leq MI \ ; \quad s \in (0,t)$$

o Then,

$$D(\phi(t)) \le D(\phi) - t||\nabla D(\phi)||_2^2 + \frac{t^2}{2}M||\nabla D(\phi)||_2^2$$

 \circ Then, for t < 2/M; $D(\phi(t)) < D(\phi)$, if

$$-||\nabla D(\phi)||_2^2 \neq 0$$
.

Gradient Descent

Algorithm

- \circ Start from some feasible ϕ .
- \circ Set $\nabla \phi = -\nabla D(\phi)$.
- \circ Find $t \in [0,1]$ s.t. $D(\phi + t\nabla \phi)$ is minimum.
- \circ Set $\phi = \phi + t\nabla\phi$.
- \circ Repeat from #2 until $\nabla D(\phi) = 0$.

Main Problem

- Above works for unconstrained setup.
- What about constrained situation?
 - "project" gradient descent into feasible space
 - we'll consider a modification of this specialized to Route-Opt setup

C. Finding Descent Direction

- Given ϕ , there exists $\Delta \phi$ such that
 - $\circ \phi + \Delta \phi$ is feasible and

$$\circ D(\phi + \Delta \phi) < D(\phi)$$

• Given this, for all $\theta \in (0,1)$,

$$\phi(\theta) = \theta(\Delta\phi + \phi) + (1 - \theta)\phi$$
, is feasible by convexity,

$$D\Big(\phi(\theta)\Big) < D(\phi)$$
; $\forall \theta$ by convexity.

- For very small θ , $D\Big(\phi(\theta)\Big) \approx D(\phi) + \theta \cdot \nabla D(\phi)^T \Delta \phi$, \circ Then, $\nabla D(\phi)^T \Delta \phi < 0$
- ullet Thus, one option is to look for $\Delta\phi$ such that
 - $\circ \phi + \Delta \phi$ remains feasible and
 - $\circ \nabla D(\phi)^T \Delta \phi < 0$
- We do this next.

C. Finding Feasible Descent Direction

- Let $\Delta \phi$ be such that $\phi + \Delta \phi$ is feasible, i.e.
 - Re-routing certain data for destination n from some i along other path
- ullet Hence, descent direction means that for some (i,n) pair \exists two paths

$$P_1 = (i, a_1, \dots, a_\ell, n)$$

$$P_2 = (i, b_1, \dots, b_k, n)$$

- Such that
 - $\circ P_1$ has positive flow on P_1 from $i \to n$;
 - \circ P_2 has some capacity left for $i \rightarrow n$ and

$$\circ \frac{\partial D(\phi)}{\partial \phi_{ia_1}} + \dots + \frac{\partial D(\phi)}{\partial \phi_{a_{\ell}n}} > \frac{\partial D(\phi)}{\partial \phi_{\ell b_1}} + \dots + \frac{\partial D(\phi)}{\partial \phi_{b_k n}}.$$

• Next, we see a simple way to find such paths

C. Finding Feasible Descent Direction

• Given ϕ , create graph $R(\phi)$ as follows

$$\begin{array}{l} \circ \text{ If } \phi_{ij} > 0 \text{, } F_{ij} < c_{ij} \text{, then} \\ \\ - \text{ assign weight } \frac{\partial D(\phi)}{\partial \phi_{ij}} \text{ to } (i,j) \\ \\ \circ \text{ If } \phi_{ij} > 0 \text{, } F_{ij} > 0 \text{, then} \\ \\ - \text{ assign weight } -\frac{\partial D(\phi)}{\partial \phi_{ij}} \text{ to } (j,i). \end{array}$$

- ullet Note that in $R(\phi)$, a feasible descent direction is
 - Equivalent to a negative cost cycle
- ullet We'll look for min-cost path in $R(\phi)$
 - The Dijstra's algorithm does not work
 - due to negative weights
 - We will use Bellman–Ford algorithm to detect neg-cycles

D. Optimality at Convergence

- Convergent point ϕ^*
 - \circ Exists because $D(\phi)$ is always decreasing
 - \circ Further, ϕ^* is such that no descent direction.
 - \circ This implies, ϕ^* is optimal.
- The described algorithm is
 - o centralized
 - → not implementable
 - o However, it's very instructive for general optimization problems
- Next, we'll see a distributed algorithm
 - Based on "dual-decomposition" and "subgradient" methods.
 - Similar ideas will be used in the context of congestion-control.

6.976/ESD.937

Distributed Route-Opt

- Main method
 - Primal & Dual version
 - convexity implies: solving Primal = solving Dual
 - o Interestingly,
 - Dual can be solved in distributed manner
 - using 'subgradient' method which is extension to gradient descent algorithm

• The algorithm is very similar in nature to Dijkstra's algorithm

Route-opt

Primal (P):

$$\min \sum_{(i,\ell)\in\mathcal{L}} D_{i\ell}(F_{i\ell}) \stackrel{\triangle}{=} \sum_{e\in\mathcal{L}} D_e(F_e)$$

subject to

$$\mathcal{C} = \begin{bmatrix} F_{i\ell} &= \sum_k t_i(k)\phi_{i\ell}(k) \leq c_{i\ell} \\ \phi_{i\ell}(j) \geq 0, & \text{for all } i, j, \ell; \\ \sum_{\ell i}(j) = 1, & \text{for all } \ell, j. \end{bmatrix}$$

$$\mathcal{O} = [t_i(j) = r_i(j) + \sum_{\ell} t_{\ell}(j)\phi_{\ell i}(j) & \text{for all } i, j;$$

- Reformulation: $x_{ik}(j) = t_i(j)\phi_{ik}(j)$
- Then,

$$C \Leftrightarrow \{F_{i\ell} = \sum_{k} x_{i\ell}(k) \le c_{i\ell} ; \quad x_{i\ell}(k) \ge 0\}$$

$$\mathcal{O} \Leftrightarrow \sum_{k:(ik)\in\mathcal{L}} x_{ik}(j) = r_i(j) + \sum_{\ell:(\ell,i)\in\mathcal{L}} x_{\ell i}(j)$$
.

Dual of Route-Opt

• Lagrangian:

$$L(\mathbf{x}; \boldsymbol{\gamma}) = \sum_{e \in \mathcal{L}} D_e(F_e) + \sum_{i,j} \gamma_i(j) \left[-\sum_k x_{ik}(j) + \sum_\ell x_{\ell i}(j) + r_i(j) \right]$$

$$= \sum_{e \in \mathcal{L}} \left[D_e(F_e) + \sum_{j=1}^n (\gamma_{e^+}(j) - \gamma_{e^-}(j)) x_e(j) \right] + \boldsymbol{\gamma}^T \mathbf{r}$$
where $e = (e^-, e^+)$

Dual function:

$$\begin{split} q(\boldsymbol{\gamma}) &= \inf_{\mathbf{x} \in \mathcal{C}} L(\mathbf{x}; \boldsymbol{\gamma}) \\ &= \boldsymbol{\gamma}^T \mathbf{r} + \sum_{e \in \mathcal{L}} \inf_{x_e = (x_e(j)); x_e \in \mathcal{C}} \left[D_e(F_e) + \sum_{j=1}^n x_e(j) \nabla \gamma_e(j) \right] \\ \text{where } \nabla \gamma_e(j) &= \gamma_{e^+}(j) - \gamma_{e^-}(j). \end{split}$$

ullet Thus, $q(oldsymbol{\gamma})$ can be evaluated "locally", since

 $\circ x_e \in \mathcal{C}$ is "locally" checkable

Dual of Route-Opt

• Dual (D):

$$\max_{\boldsymbol{\gamma}} q(\boldsymbol{\gamma}).$$

• Since there is no duality gap (P is convex minimization)

$$\circ \ \pmb{\gamma}^* \text{ s.t. } q(\pmb{\gamma}^*) = \max_{\pmb{\gamma}} q(\pmb{\gamma}) \text{ gives } x^*(\pmb{\gamma}^*) = L(x^*(\pmb{\gamma}^*), \pmb{\gamma}^*) \ .$$

- → Sufficient to solve **D**
- ullet In $oldsymbol{\mathsf{D}}$, γ is "free" variable, hence
 - \circ If we could evaluate $q(oldsymbol{\gamma})$ locally, and
 - Use simple unconstrained optimization procedure
 - We'll obtain distributed solution
- Question: what unconstrained optimization procedure?
 - Can not used gradient descent as it gradient may not exists
 - Instead, we'll use subgradient method

Subgradient Method

• Similar to gradient, but used when gradient is non-unique

$$\max_{\pmb{\gamma}} q(\gamma) = \min_{\pmb{\gamma}} - q(\pmb{\gamma})$$
 : standard convex minimization
$$-q(\pmb{\gamma}) = -\inf_x L(x,\pmb{\gamma}) = -L(x(\pmb{\gamma}),\pmb{\gamma}) \;.$$

ullet Then, gradient of $L(x(\gamma), \gamma)$ is a subgradient for $(-q(\gamma))$

$$-\nabla L(x(\boldsymbol{\gamma}), \boldsymbol{\gamma}) = \left(-\frac{\partial q(\boldsymbol{\gamma})}{\partial \boldsymbol{\gamma}_i(j)}\right)$$

where,

$$\frac{\partial q(\boldsymbol{\gamma})}{\partial \gamma_{i}(j)} = r_{i}(j) \left[\sum_{e:e^{+}=i} x_{e}(j) - \sum_{e:e^{-}=i} x_{e}(j) \right] + \left[\sum_{e:e^{+}=i \text{ or } e^{-}=i} \frac{\partial D_{e}(x_{e})}{\partial x_{e}} \left\{ \sum_{j=1}^{n} \frac{\partial x_{e}(j)}{\partial \gamma_{i}(j)} \right\} \right] + \sum_{e:e^{+}=i} \sum_{j=1}^{n} \frac{\partial x_{e}(j)}{\partial \gamma_{i}(j)} - \sum_{e:e^{-}=i} \sum_{j=1}^{n} \frac{\partial x_{e}(j)}{\partial \gamma_{i}(j)} .$$

Subgradient Method

ullet Hence, to compute subgradient of $(-q(oldsymbol{\gamma}))$, we need

$$\left(\frac{\partial x_i(j)}{\partial \gamma_i(j)}\right)_{i,j}$$
 at $x = x(\gamma)$ and $\frac{\partial D(x_e)}{\partial x_e}$ at $x = x(\gamma)$

- Again, these are locally computable
- \circ Hence, subgradient components $\frac{\partial (-q(\gamma))}{\partial \gamma_i(j)}$ are computable at node i (using edge variables)
- Subgradient Algorithm
 - 1. Start with initial γ^0 . Set t=0.
 - 2. Compute $q(\boldsymbol{\gamma}^t)$.
 - 3. Compute subgradient of $-q(\boldsymbol{\gamma}^t) \stackrel{\triangle}{=} (G_i^t(j))$.
 - 4. Update $\gamma^{t+1} = \gamma^t \alpha_t G^t$.
 - 5. Set t = t + 1 and repeat from #2.

* Here, α_t is s.t. $\lim \alpha_t = 0$ but $\sum \alpha_t = \infty$.

Summary

Routing

- An essential network-layer task
- Simple flow-based model to describe the setup formally
 - allows us to evaluate performance
- Heuristics
 - simple, distributed and, hence, implemented
- Optimal routing
 - at the final glance, solvable but difficult to implement
 - recent techniques can lead to simple, implementable solutions
 - will it be implemented ?

6.976/ESD.937

Summary

- Related results
 - Completely distributed primal algorithm
 - Algorithm by Gallager (1976)
 - Asynchronous algorithms
 - Algorithm by Tsitsiklis and Bertsekas (1985)
 - Effect of failure
 - Stability of algorithm (no oscillation)
- Broad impact
 - Led to development of distributed network algorithms
 - similar ideas in congestion control
 - Routing or job assignment tasks in other scenarios can benefit from these methods

References

- 1. Chapter 5, in book on Data Networks by Bertsekas-Gallager
- 2. Notes by Stephen Boyd (some posted on the class page)
 - A. Link 1: www.stanford.edu/course/ee3920/
 - Subgradient: definition and properties
 - Subgradient algorithm: convergence and correctness
 - B. Link 2: www.stanford.edu/course/ee363/ [or Chapters 4 and 5, Convex Optimization by Boyd-Vandenberg]
 - C. Notes on Decomposition Method
 - Again, see www.stanford.edu/course/ee3920/, or
 - Chapter 6, Nonlinear Programming by Betsekas

3. Miscellaneous

- Some notes of current Internet routing practice will be posted
- An excellent survey paper by Tsitsiklis and Bertsekas (1992) on Asynchronous algorithms