
6.S189 Homework 1

http://web.mit.edu/6.189/www/materials.html

What to turn in

Do the warm-up problems for Days 1 & 2 on the online tutor. Complete the problems below on your computer and
get a checkoff in lab or office hours for them. Problems 1.1 - 1.4 can be completed after Monday’s lecture and will
be required for Checkoff 1; problems 2.1 and 2.2 can be completed after Tuesday’s lecture and will be required for
Checkoff 2. Don’t wait until the last minute to get your checkoffs!

Exercise 1.1 – Installing Python

Follow the instructions on installing Python and IDLE on your own computer on the Materials page of the course
website, in the Handouts section. Be sure to install Python 2.7.X. Ask a TA for help if you run into any
trouble. Before continuing, play around with the Python shell a bit and explore how you can use it as a calculator.

Exercise 1.2 – Hello, world!

Recall that a program is just a set of instructions for the computer to execute. Let’s start with a basic command:

print x: Prints the value of the expression x, followed by a new line.

Create a new program called hello world.py. You will use this file to write your very first ‘Hello, world!’ program.

1

http://web.mit.edu/6.189/www/materials.html

How to create a program file:

1. Open a new window by choosing New Window from the File menu.

2. Save the file as hello world.py. Do NOT skip the ‘.py’ portion of the file name - otherwise, you will lose out
on syntax highlighting!

3. Start every program with a bank of comments, with a comment line for your name, your recitation section,
the name of your file, and today’s date. Recall that a comment line begins with a ‘#’ (pound) symbol.

You can now write your very own Hello, world! program. This is the first program that most programmers write in
a new programming language. In Python, Hello world! is a very simple program to write. Do this now... it should
only be one line!

2

When you are done, save your work and run it. Your code should look similar to this:

To run your program, chose Run Module from the Run menu (or just hit F5 on Windows/Linux, or fn-F5 on a
Mac). When you run the code, your shell should look similar to this:

When you run your code, it first prints the line >>> ===== RESTART =====, then runs your code underneath that
line.

Exercise 1.3 – Printing

From the course website, download the homework 1.py template. Remember to put your name and kerberos at the
top. If you don’t we’ll be a bit grumpy.

Write a program using print that, when run, prints out a tic-tac-toe board. Remember to save your program
regularly, to keep from losing your work! The purpose of this exercise is to make sure you understand how to
write programs using your computing environment; many students in introductory courses experience trouble with
assignments not because they have trouble with the material, but because of some weird environment quirk.

Expected output:

| |

| |

| |

3

Exercise 1.4 – Variables

Recall that variables are containers for storing information. For example,

Program Text:

a = ‘Hello, world!’

print a

Output:

Hello, world!

The = sign is an assignment operator which tells the interpreter to assign the value ‘Hello, world!’ to the
variable a.

Program Text:

a = ‘Hello, world!’

a = ‘and goodbye...’

print a

Output:

and goodbye...

Taking this second example, the value of a after executing the first line above is ‘Hello, world!’. But, after
executing the second line, the value of a changes to ‘and goodbye...’. Since we ask the program to print out a
only after the second assignment statement, that is the value that gets printed. If you wanted to save the values of
both strings, you should change the second variable to another valid variable name, such as b. Variables are useful
because they can cut down on the amount of code you have to write.

In homework 1.py, write a program that prints out the tic-tac-toe board from exercise 1.3, but which uses variables
to cut down on the amount of typing you have to do. Hint - how many different variables should you need?

When you are done coding and testing!, make sure your name is in the comment section of your programs, then
find a staff member to check you off for exercises 1.1 - 1.4.

At this point, we suggest completing the tutor warm-up problems and Day 1 readings to cement your understanding
of Monday’s topics. The remaining exercises cover Tuesday’s topics.

4

Exercise 2.1 – User input

Do this exercise in homework 1.py. In this exercise, we will ask the user for his/her first and last name, and
date of birth, and print them out formatted. Recall that you can get input from the user using the command
raw input(‘text’), as shown in lecture.

Note: There are two functions to get user input. The first, raw input, turns whatever the user inputs into a string
automatically. The second, input, preserves type. So, if the user inputs an int, or a float, you will get an int or
a float (rather than a string). Be careful though- you still want to use raw input if you want a string back, or
otherwise the user will have to put quotes around their answer. Use raw input here - it’s good for string processing,
like this problem. input will come in handy when using user input to compute math, which we will be needing in
later exercises.

Here is an example of what this program should do:

Output:

Enter your first name: Chuck

Enter your last name: Norris

Enter your date of birth:

Month? March

Day? 10

Year? 1940

Chuck Norris was born on March 10, 1940.

To print a string and a number in one line, you just need to separate the arguments with a comma (this works for
any two types within a print statement). The comma adds a space between the two arguments. For example, the
lines:

mo = ’October’

day = ’20’

year = ’1977’

print mo, day, year

will have the output

October 20 1977

OPTIONAL: Now, for something completely different... a discussion on how to print strings, most prettily...

Note that none of the commas are in this output! To do that you want something like this:

print mo, day+’,’, year.

The + sign concatenates two strings, but can only be used on two strings. Using it on a number and a string will
cause an error (because it is ambiguous as to what you want the program to do!) That’s why it’s a great idea to
use raw input for this problem; if you use input you’d have to convert the int to a string. We’ll cover this more
in-depth later on, but you may want to play with string concatenation operations now to get everything to look its
prettiest.

5

Exercise 2.2 – Rock, Paper, Scissors

In this exercise, you are going to practice using conditionals (if, elif, else). You will write a small program that will
determine the result of a rock, paper, scissors game, given Player 1 and Player 2’s choices. Your program will print
out the result. Here are the rules of the game:

1. First create a truth table for all the possible choices for player 1 and 2, and the outcome of the game. This
will help you figure out how to code the game!

Player 1 Player 2 Result
Rock Rock Tie
Rock Scissors Player 1

2. Create a new file rps.py that will generate the outcome of the rock, paper, scissors game. The program
should ask the user for input and display the answer as follows:

Player 1? rock

Player 2? scissors

Player 1 wins.

The only valid inputs are rock, paper, and scissors. If the user enters anything else, your program should
output ‘This is not a valid object selection’. Use the truth table you created to help with creating the
conditions for your if statement(s). Read on to the next page before starting...

6

Note If you have a long condition in your if statement, and you want to split it into multiple lines, you can
either enclose the entire expression in parenthesis, e.g.

if (player1 == ’rock’ and

player2 == ’scissors’):

print ’Player 1 wins.’

Or, you can use the backslash symbol to indicate to Python that the next line is still part of the previous line
of code, e.g.

if player1 == ’rock’ and\

player2 == ’scissors’:

print ’Player 1 wins.’

Use whichever form you feel comfortable using.

When you are done coding and testing!, make sure your name is in the comment section of your programs, then
find a staff member to check you off for exercises 2.1 and 2.2.

7

