Lecture 3

Population Genetics, Epidemiology and Evolution

Recap from last time…

• Evolution?
• Selection?
Evolution

• Descent with modification
• Change in gene frequency in a population over time
 – Mutation
 – Migration
 – Selection
 – Genetic Drift
 – Genetic Drift

Measures of Evolution

• How do we know evolution is happening?
• Population genetics
 – Evolution + Genetics
 – Darwin + Mendel
 – How populations change genetically over time
Modern Synthesis

• Comprehensive theory of evolution
 – Fisher - inheritance of Mendelian traits
 – Haldane - natural selection
 – Dobzhansky and Wright - genetics
 – Mayr - biogeography
 – Simpson – paleontology (rate of Δ)
 – Stebbins – variation in plants

• Huxley
 – “Evolution: The Modern Synthesis”

Modern Synthesis

• Genetic variation in populations arises by chance through mutation and recombination
• Evolution consists primarily of changes in the frequencies of alleles between one generation and another as a result of
 – genetic drift
 – gene flow
 – natural selection
• Speciation occurs gradually when populations are reproductively isolated
Mendelian “Review”

- Genotype/Phenotype
- Dominant/Recessive
- Heterozygous/Homozygous
- Punnet Squares

Each true-breeding plant of the parental generation has identical alleles, PP or pp. Gametes (circles) each contain only one allele for the flower-color gene. In this case, every gamete produced by one parent has the same allele.

Union of the parental gametes produces F₁ hybrid having a Pp combination. Because the purple-flower allele is dominant, all these hybrids have purple flowers.

When the hybrid plants produce gametes, the two alleles segregate; half the gametes receive the P allele and the other half the p allele.

This box, a Punnett square, shows all possible combinations of alleles in offspring that result from an F₁, Pp x Pp, cross. Each square represents an equally probable product of fertilization. For example, the bottom left box shows the genotypic combination resulting from a p egg fertilized by a P sperm.

Random combination of the gametes results in the 3:1 ratio that Mendel observed in the F₂ generation.
Mendelian “Review”

• Aa x AA ->
 – A. 1 AA : 2 Aa : 1 aa
 – B. 1 AA : 3 Aa
 – C. 1 AA
 – D. 1 aa : 2 Aa
 – E. 1 Aa : 1 AA

Predicting Genotypes

• For a particular locus with alleles A and a
• Frequency of A = p and a = q
• We know that p + q = 1
• If there is random mating
 – Frequency of AA = p * p = p²
 – Frequency of aa = q * q = q²
 – Frequency of Aa = pq + pq = 2pq
• We also know then that
 – p² + q² + 2pq = 1
Hardy Weinberg

• Populations with consistent proportions for p and q as follows
 – Homozygous Dominant = p^2
 – Homozygous Recessive = q^2
 – Heterozygous = $2pq$

• Are said to be at Hardy Weinberg Equilibrium

Hardy Weinberg

• Allele and genotype frequencies

[Diagram showing genetic inheritance through generations, including allele and genotype frequencies.]
Hardy Weinberg Problem I

- Sickle Cell Anemia
 - SS = susceptible to malaria but no SCA
 - ss = non-susceptible but SCA \(\rightarrow\) mortality
 - Ss = non-susceptible and no SCA

- What do we expect proportions of ss? Ss?
- E.g. 4% ss - what are proportions of Ss
 - \(0.04 = ss = q^2 \rightarrow q = \sqrt{0.04} = 0.2\)
 - \(p = 1 - q = 1 - 0.2 = 0.8\)
 - \(Ss = 2pq = 2(0.8)(0.2) = 0.32\)

Hardy Weinberg Problem II

- What would it take to increase Ss proportion to 50% (from 32%)?
 - \(Ss = 2pq = 0.5 \rightarrow pq = 0.25\)
 - \(q = 1 - p \rightarrow p (1-p) = 0.25 \rightarrow p = 0.5\)
 - Which means
 - \(aa\) goes to 0.25 from 0.04, over 6x
Hardy Weinberg Problem III

• How many of you can roll your tongues?
 – A - Yes
 – B - No

• What is the percentage of heterozygous tongue-rollers?
 – Yes = $p^2 + 2pq$
 – No = q^2
 – $q = \sqrt{No}$
 – $p = 1 - q$
 – Heterozygous = $2pq$

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tongue Rollers</td>
<td>7</td>
<td>0.77777777</td>
</tr>
<tr>
<td>Non-Rollers</td>
<td>2</td>
<td>0.22222222</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

\[p = 0.5083995479 \]
\[q = 0.4916004521 \]

\[\text{Heterozygotes} = 0.4983645377 \]
Conditions for HW Equilibrium

- Extremely Large Population Size
 - No genetic drift
- No Gene Flow
 - No immigration or emigration
- No Mutations
- Random Mating
 - No selecting particular mates
- No Natural Selection

Detecting Deviations

- In sample of 1000 people blood types (M,N,MN)
 - Genotype Observed Expected
 - MM 298 ?
 - MN 489 ?
 - NN 213 ?
- Estimates
 - \(p = \frac{(2\times298) + 489}{2000} = 0.5424 \)
 - \(q = \frac{(2\times213) + 489}{2000} = 0.4575 \)
 - \(p^2 = 0.2943 \)
 - \(2pq = 0.4964 \)
 - \(q^2 = 0.2093 \)
Detecting Deviations

- In sample of 1000 people blood types (M,N,MN)
 - Genotype | Observed | Expected
 - MM | 298 | 294
 - MN | 489 | 496
 - NN | 213 | 209
- Compute Chi-Square
 - $\sum((\text{Observed}-\text{Expected})^2/\text{Expected} = .22$
 - Test against $p = .05$ value (3.84)
 - Conclude in equilibrium
- **Most important part - compare observed and expected frequencies of genotypes

Sources of Disequilibrium

- Mutation
 - Point mutations are rare
 - Usual in “neutral” locations
 - Other forms may be more common
 - Can be a factor in rapidly reproducing simple organisms (viruses)
Sources of Disequilibrium

• Non-random mating
 – Sexual selection - choosy females
 – Assortative mating - like types
 – Inbreeding

Sources of Disequilibrium

• Genetic Drift
Sources of Disequilibrium

- Immigration and Emigration

Sources of Disequilibrium

- Selection
 - Directional
 - Disruptive
 - Stabilizing
Selection and Evolution

Source of Polymorphism (Genetic Diversity)

- Hidden Recessive Alleles
 - Many rare genetic diseases
- Heterozygous Advantage
 - Sickle cell (in Africa)
- Frequency Dependent Selection
 - Host-parasite interactions (Red Queen)
- Neutral Variation
 - Hard to demonstrate
Case Study - Evolution and HIV/AIDS

• HIV enters white blood cells using two receptors
 – CD4
 – CCR5

• A mutation exists that causes CCR5 receptors to not exist = CCR5∆32

• ∆32 is recessive so must be ∆32/∆32 homozygous for protection

Will ∆32 Save Africa?

• If current frequencies of infection and allele (.2) are high and 100% of ∆32 survive, while 75% of non ∆32 survive

• But this is not what is observed…
Will $\Delta 32$ Save Africa?

- Distribution of allele varies geographically

- In Western Europe frequency of allele is high but disease is low

\[
\begin{array}{c|c|c|c}
\text{Allele} & \text{Initial frequency} & \text{Fraction surviving} \\
\hline
+/+ & 0.2 & 0.995 \\
+/\Delta 32 & 0.995 \\
\Delta 32/\Delta 32 & 1.0 \\
\end{array}
\]

- So there isn’t much selective pressure to spread
Will $\Delta 32$ Save Africa?

- In Sub-Saharan Africa frequency of allele is low but disease is high

 \[\begin{array}{cccc}
 \text{Generation} & 0 & 10 & 20 & 30 & 40 \\
 \text{Frequency of} & 0.2 & 0.6 & 1.0 & 0.75 & 0.75 & 1.0 \\
 \text{CCR5-$\Delta 32$ allele} & \\
 \end{array} \]

- So most copies of allele are in heterozygotes and there is little for selection to act upon

Selection within Individuals

- Individuals can be host to populations (as in HIV)
- AZT resistance in HIV (within individuals)
Selection within Individuals

- Even without drugs, HIV competes within its host
- Should more “virulent” strains evolve?
- Virulence
 - Ability to cause disease
- Increase in virulence = spread faster within the host

Selection on HIV

- Increase in virulence = spread faster between hosts?
 - Perhaps
- So should HIV increase/decrease in virulence?
- What about transmission between individuals?
 - Need to understand disease dynamics...
Epidemics - SIR Models

- Susceptible – Infected – Recovered (Anderson and May)
- \(\frac{dS}{dt} = -\beta SI \)
- \(\frac{dI}{dt} = \beta SI - \gamma I \)
- \(\frac{dR}{dt} = \gamma I - \beta I \)
 - \(\beta \) = transmission rate
 - \(\gamma \) = recovery rate
- \(R_0 = \frac{\beta}{\gamma} \)
 - Average number of individuals that each sick individual infects

\[SIR \text{ Disease Dynamics} \]

\(R_0 \) Predicts Spread

- \(R_0 > 1 \) results in spread
- The value of \(R_0 \) for some well-known diseases
 - Disease \(R_0 \)
 - AIDS 2 to 5
 - Smallpox 3 to 5
 - Measles 16 to 18
 - Malaria \(\gg 100 \)
SIR – High Mixing

- High movement rates for all individuals
- Sick people mix evenly with susceptibles and non-susceptibles
- Approximates differential equations and in this case everyone gets sick

SIR – Low Mixing

- Low movement rates for all individuals
- Sick tend to meet recovered and sick
- Leads to much lower infection rate and in this case only 50% total infection
- In many diseases (HIV) infected individuals are not as likely to meet uninfected individuals
Ever Increasing or Decreasing Virulence?

- Myxoma
- Introduced to control rabbit problem in Australia
- Original strains killed 95%+ of infected rabbits
- Later recovered predominant strains only killed 50%
- Sometimes increase in virulence decreases R_0

More Complete Definition of R_0

- $R_0 = \frac{\beta N}{\alpha + b + \gamma}$

$\beta =$ rate constant of infectious transfer (transmissibility)
$N =$ density of the susceptible host population
$\alpha =$ rate of parasite-induced mortality (virulence)
$b =$ rate of parasite-independent mortality
$\gamma =$ rate of recovery
Constraints on Virulence

- Virulence (α) proportional to transmissibility (β)
- So intermediate values can be most successful
- Perhaps suggests that HIV will also remain at similar virulence, as it lets individuals pass it on.

Units of Selection

- Is this evidence of selection happening on groups (the populations within the hosts)?
- Are some viruses being “altruistic” and limiting the virulence?
- This isn’t necessary to explain. We can think about it from the “selfish” point of view.