

Secretory Pathway and Membrane Traffic

Questions arrising:

- 0. How do you break the membrane barrier?
- 1. What happens to a protein as it travels thru the pathway?
- 2. Why so many different compartments? How are they maintained in spite of intercompartmental flow
- 3. What are the signals on the protein?
- 4. What cellular machinary is involved in decoding the signals?
- 5. How is specificity generated (specificity of cargo, specificity of targeting)?
- 6. How do you go about studying such complex pathways?

Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high-resolution electron

tomography

The Golgi complex with the seven cisternae (cis-trans: C1-C7) is at the center. The color coding is as follows: C1, light blue; C2, pink; C3, cherry red; C4, green; C5, dark blue; C6, gold; and C7, bright red. The Golgi is displayed in the context of all surrounding organelles, vesicles, ribosomes, and microtubules: membrane-bound ribosomes, blue; free ribosomes, orange; microtubules, bright green; dense core vesicles, bright blue; clathrin-negative vesicles, white; clathrin-positive compartments and vesicles, bright red; clathrin-negative

compartments and vesicles, purple; and mitochondria, dark green.

Marsh BJ. Lessons from tomographic studies of the mammalian Golgi. Biochim Biophys Acta. 2005 Jul 10;1744(3):273-92

Cyto Decision points: 1. Cytosol: cytosol or Organelle (focus on ER, also mitochondrion and peroxisome and nucleus) 2. ER lumen: modifications, proper folding and transfer to Golgi (conformation, assembly, Bip) 3. transitional ER or cis golgi: return to ER (KDEL sequence) 4. cis golgi: modify for lysosomal targeting 5. cis golgi: transfer to medial golgi 6. medial golgi: modifications and transfer to trans golgi 7. trans golgi: modifications and transfer to TGN 8. TGN: modifications, constitutive or regulated secretion 9. TGN: lysosomal or cell surface targeting (or 1 retrograde) 10. TGN: differential sorting to polar surfaces (apical, basolateral) 11. surface: stable expression/recycling

12. endosomes: return to surface, transcytosis,

return to Golgi, degradation

D. hydroxylation: lysine & proline (collagen), asp and asn: erythro-ß-hydroxyaspartic acid and erythro-ßhydroxyasparagine, posttranslational hydroxylation of asp and asn, domains homologous to EGF precursor, consensus sequence: Cys-X-Asp/Asn-X-X-X- Phe/Try-X-Cys-X-Cys

E. SO₄, on tyrosine and sugar chains, unique N-link on hormones from pituitary, also PO_4

F. Cleavage, insulin, preproopiomelanocortin - dibasic aa

What are functions of these modifications? Diverse- folding, targeting, activity

Where do these modifications take place along the pathway?

Glycosylation

Function: Folding, Conformation, Activity, Stability, Sorting

N-linked

O-linked

Lipid-linked (glycolipids)

Proteoglycans (O-linked)

Functional	groups and	proteins	modified	by	O-GlcNAc

Protein group	Example(s)	
Nuclear pore proteins	Nuclear pore proteins p54, p62, p153, p155, p180, p153, p214 and p358.	~100 500
Transcription factors	Sp1, AP-1 (c-fos and c-jun), CTF, hepatocyte nuclear factor 1, pancreas-specific transcription factor, serum response factor, p53, β-catenin, ELF-1,NFκ B, PAX-6, Oct1, c-myc, RB, V- <i>erb</i> A, and ER-β. FOXO	proteins subject to O- GlcNAcvlation
Polymerase(s)	Large subunit of RNA Pol II.	
RNA binding proteins	hnRNP G (La-antigen), Ewing sarcoma RNA-binding protein, eukaryotic initiation factor $4A1$, elongation factor $1-\alpha$ and 40S ribosomal protein s24.	
Phosphatases, kinases and adapter proteins	Nuclear tyrosine phosphatase p65, casein kinase II, AKT, insulin receptor substrate 1,2, GSK-3β, and PI3-kinase.	
Cytoskeletal proteins	Keratins 8, 13, 18, neurofilaments H, M, L, talin, vinculin, Band 4.1, ankyrinG, E-cadherin, synapsin 1, myosin, cofilin, α -tubulin, dynein LC1, MAP 2 and 4, Tau, β -synuclein, Piccolo, AP-3 and -180, β -APP, and adenovirus type 2 and 5 fiber proteins.	
Chaperones	HsP 27, HsC70, and HsP90.	
Enzymes	eNOS, GS, glyceraldehyde-3-phosphate	
Also: Proteasome, Stress, Cell Cycle & Viral Proteins	dehydrogenase, phosphoglycerate kinase, enolase, pyruvate kinase, UDP-glucose pyrophosphorylase, and OGT.	Zachara NE, Hart GW. Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta. 2006 May- Jun;1761(5-6):599-617.

Proteins modified by	O-GleNAc			Functional subgroup	Protein
Functional subgroup	Protein	Functional subgroup	Protein		β-synuclein
Nuclear pore proteins (NUP) Chromatin Transcription factors	p62 Nup 180 Nup 153, 214, 358 Nup 54, 155 chromatin-associated proteins Sp1 AP-1 (c-fos and c-fun) ^a CTF ^a hepatocyte nuclear factor 1 V-erbA pancreas-specific transcription factor ^a serum response factor c-Myc p53 ER- α , β β -catenin NF+ α B ELF-1 PAX-6 enhancer factor 2D ^a human C1 transcription factor ^a K1AA0144, Oc1 ^a Plakoglobin YY1 PDX-1 CREB RB P107	RNA binding proteins Phosphatases Kinases and adapter proteins Cytoskeletal proteins Intermediate Filaments Actin-based Microtubule-based Other	HnRNP G (La-antigen) Ewing-sarcoma RNA-binding protein eukaryotic initiation factor 4A1 ^a elongation factor 1- α^a 40S ribosomal protein s24 ^a nuclear tyrosine phosphatase p65 CK II insulin receptor substrate 1,2 GSK-3 β PI3-kinase keratins 8, 13, 18 neurofilaments H, M, L Band 4,1 Talin Vinculin Ankyring, Synapsin 1 Myosin ^a E-eadherin ^a Cofilin ^a Tau MAP 2 and 4 Dynein LC1 ^a α -tubulin ^a adenovinus type 2 and 5 fiber proteins AP-3 and -180 β -APP	Chaperones Metabolic enzymes Other	Portuctuli Piccolo ⁴ HsP 27 HsC70 HsP90 ⁴ HsP70 ⁴ eNOS enolase ⁸ glyccarldehyde-3-phosphato dehydrogenase ⁴ phosphoglycerate kinase ⁶ UDP-glucose pyrophosphorylasa ⁸ glycogen synthase eukaryotic peptide chain initiation factor -2 αρ67 OGT CRMP-2 ubiquitin carboxy hydrolase (UCH) L1 Glut-1 Annexin 1 ^a nucleophosmin ⁴ proteosome component C2 Q04323, UCH homolog ⁸ Sec33, human homolog Ran ⁴ Pho GDP-dissociation inhibitor 1 ⁴ phosphatase-2a inhibitor ⁴ Glaba-receptr interacting
* O-GleNA0 x supporting structu	nodification of these proteins is ral work has not been published.	considered putative as		Viral proteins	protein-1 splice variants SV-40 large T-antigen virion basic phosphoprotein NS26 rotavirus protein baculovirus gp41
Zachara NE, Hart	GW. Cell signaling, the esse	ntial role of O-GlcNA	c! Biochim Biophys Acta. 200	6;1761(5-6):599-617	HCMV UL32 (BPP) tegument protein

Pathways altered	ed by changes in	glucose/glucosar	nine metabolism
Tumor growth	Nutrient sensing	Calmodulin Kinase kl/ATPase	NF-ĸB
Cell cycle		Tau and	
	Leptin levels	neurodegenerative diseases	Metabolic enzymes
	Diabetes-associated		eNOS
Neutrophil activation	apoptosis	Nuclear localization	
		Connexin36	PAI-1 expression
Stress response pathways	Glycogen synthase eNOS	ID2, transcriptional	Osteoporin
1 million of the		repressor	Transforming growth
Capacitive Ca2+	P38 Map Kinase	Transcription	factor-a
entry		Insulin responsive	Transforming growth
Insulin resistance	PKC	transcription	factor-B
		Fibronectin	Angiotensin gene expression
			Calmodulin
			Cox-2 expression
			Haptoglobin

Tools: Inhibitors of glycosylation:

tunicamycin: UDP-GlcNAc:dolichyl-P GlcNAc-P transferase, ER, nucleoside antibiotic blocks all N-glycosylation, no chemical analogue for O-links (step 1); however, IdID cells have mutation (reversible block)

castanospermine: plant alkaloid, glucosidase I (step 2)

1-deoxynorjirimycin: glucosidases I & II, delays exit from ER (steps 2&3)

deoxymannojirimycin: mannosidase I -Man₉GlcNAc₂ chains (step 4)

structures (Glc)₃(Man)₃(GlcNAc)₂

• tunicamycin sensitive electrophoretic mobility: probably has N-linked chains, drug must be added during synthesis

Tools used for marking probable site of glycoprotein in ER->Golgi pathway:

- tunicamycin sensitive electrophoretic mobility: probably has N-linked chains, drug must be added during synthesis
- Endoglycosidase F or N-glycanase sensitive: protein has N-linked chains, Asn->Asp
- Endoglycosidase H sensitive Endo H used with proteins whose fully mature forms have "complex-type" N-linked chains. Endo H sensitive protein (usually shift in electrophoretic mobility of metabolically labeled protein) has probably not been processed through the medial Golgi during synthesis of complex N-linked chain, the precursor forms are Endo H sensitive, after addition of GlcNAc (by GlcNAc transferase I, step 2) and subsequent removal of a specific mannose in the medial Golgi (step 3), the chain becomes Endo H resistant. N-linked chains whose normal mature form is hybrid or high mannose chains are always Endo H sensitive. Cuts between GlcNAcs.

Tools used for marking probable site of glycoprotein in ER->Golgi pathway:

- tunicamycin sensitive electrophoretic mobility: probably has N-linked chains, drug must be added during synthesis
- Endoglycosidase F or N-glycanase sensitive: protein has N-linked chains, Asn->Asp
- Endoglycosidase H sensitive Endo H used with proteins whose fully mature forms have "complex-type" N-linked chains. Endo H sensitive protein (usually shift in electrophoretic mobility of metabolically labeled protein) has probably not been processed through the medial Golgi - during synthesis of complex Nlinked chain, the precursor forms are Endo H sensitive, after addition of GlcNAc (by GlcNAc transferase I, step 2) and subsequent removal of a specific mannose in the medial Golgi (step 3), the chain becomes Endo H resistant. Nlinked chains whose normal mature form is hybrid or high mannose chains are always Endo H sensitive. Cuts between GlcNAcs.
- Sialidase (neuraminidase) sensitive: protein N- and/or O-linked chains have been modified with sialic acid, usually occurs in the trans Golgi or TGN.
- O-glycanase: protein may have "mucin-type" (GalNAc-attached) O-linked chains, specific for O-GalNAc-Gal, usually must treat with sialidase first to remove any blocking sialic acid.
- Alkaline borohydride sensitive: protein may have "mucin-type" (GalNAcattached) O-linked chains.
- Oligosaccharide metabolic labeling with [³H]glucosamine added to cells.

Pulse ([³⁵S]met/cys) /Chase, Immunoprecipitation, SDS-PAGE Analysis of the Biosynthesis of the LDL Receptor in Cultured

OTHER SIGNALS: SORTING					
TABLE 17-2 Known Sorting Signals That Direct Proteins to Specific Transport Vesicles					
Signal Sequence*	Proteins with Signal	Signal Receptor	Vesicles That Incorporate Signal-bearing Protein		
Lys-Asp-Glu-Leu (KDEL)	ER-resident luminal proteins	KDEL receptor in <i>cis-</i> Golgi membrane	СОРІ		
Lys-Lys-X-X (KKXX)	ER-resident membrane proteins (cytosolic domain)	COPI α and β subunits	СОРІ		
Di-acidic (e.g., Asp-X-Glu)	Cargo membrane proteins in ER (cytosolic domain)	COPII / subunit	COPII		
Mannose 6-phosphate (M6P)	Soluble lysosomal enzymes after processing in <i>cis</i> -Golgi	M6P receptor in <i>trans</i> -Golgi membrane	Clathrin/AP1		
	Secreted lysosomal enzymes	M6P receptor in plasma membrane	Clathrin/AP2		
Asn-Pro-X-Tyr (NPXY)	LDL receptor in the plasma membrane (cytosolic domain)	AP2 complex	Clathrin/AP2		
Tyr-X-X-Ф (YXXФ)	Membrane proteins in <i>trans</i> -Golgi (cytosolic domain)	AP1 (µ1 subunit)	Clathrin/AP1		
	Plasma membrane proteins (cytosolic domain)	AP2 (µ2 subunit)	Clathrin/AP2		
Leu-Leu (LL)	Plasma membrane proteins (cytosolic domain)	AP2 complexes	Clathrin/AP2		
$X = any amino acid; \Phi = hydrophobic amino acid. Single-letter amino acid abbreviations are in parentheses.$					

TABLE 17-1 Coated Vesicles Involved in Protein Trafficking							
Vesicle Type	Coat Proteins	Associated GTPase	Transport Step Mediated				
СОРП	Sec23/Sec24 and Sec13/Sec31 complexes, Sec16	Sar1	ER to <i>cis</i> -Golgi				
СОРІ	Coatomers containing seven different COP subunits	ARF	<i>cis</i> -Golgi to ER Later to earlier Golgi cisternae				
Clathrin and adapter proteins [*]	Clathrin + AP1 complexes	ARF	trans-Golgi to endosome				
uuupter proteino	Clathrin + GGA	ARF	trans-Golgi to endosome				
	Clathrin + AP2 complexes	ARF	Plasma membrane to endosome				
	AP3 complexes	ARF	Golgi to lysosome, melanosome or platelet vesicles				
*Each type of AP complex consists of four different subunits. It is not known whether the coat of AP3 vesicles contains clathrin.							
Caveolae Caveolin		Fro	From Plasma Membrane & others				

Direct siRNA depletion of clathrin blocks transferrin receptor and EGFR (YXX & type sorting signals) endocytosis, as well as LDLR (NPXY-type sorting signals) endocytosis

Depletion of either of 2 AP2 subunits (μ 2 or α) dramatically reduces surface clathrin coats (AP2), but not Golgi (AP1), coats and blocks transferrin endocytosis

BUT did not block EGFR or LDLR (chimera) endocytosis!!!!

Inactivation of AP-2 by overexpression of the adaptor-associated kinase (AAK1) led to similar results

Motley, A., Bright, N.A., Seaman, M.N., and Robinson, M.S. (2003). J. Cell Biol. 162, 909–918. Hinrichsen, L., Harborth, J., Andrees, L., Weber, K., and Ungewickell, E.J. (2003). J. Biol. Chem., in press.

Conner, S.D. and Schmid, S.L. (2003). J. Cell Biol. 162, 773-780. Reviewed in:

Sever S. Ap-2 makes room for rivals. Dev Cell. 2003 Oct;5(4):530-2.

