Preimplantation genetic diagnosis (PGD) was introduced at the beginning of the 1990s as an alternative to prenatal diagnosis, to prevent termination of pregnancy in couples with a high risk for offspring affected by a sex-linked genetic disease. At that time, embryos obtained in vitro were tested to ascertain their sex, and only female embryos were transferred. Since then, techniques for genetic analysis at the single-cell level, involving assessment of first and second polar bodies from oocytes or blastomeres from cleavage-stage embryos, have evolved. Fluorescence in-situ hybridisation (FISH) has been introduced for the analysis of chromosomes and PCR for the analysis of genes in cases of monogenic diseases. In-vitro culture of embryos has also improved through the use of sequential media. Here, we provide an overview of indications for, and techniques used in, PGD, and discuss results obtained with the technique and outcomes of pregnancies. A brief review of new technologies is also included.

Preimplantation genetic diagnosis (PGD) is an early form of prenatal diagnosis, in which embryos created in vitro are analysed for well-defined genetic defects; only those free of the defects are replaced into the womb. The technique is used mainly in two broad indication groups. The first group are individuals at high risk of having a child with a genetic disease—eg, carriers of a monogenic disease or of chromosomal structural aberrations, such as translocations—who have repeatedly opted to terminate their pregnancies on the basis of results of prenatal tests, have concurrent infertility (as in congenital bilateral absence of the vas deferens), have had recurrent miscarriages (as is often the case in translocation carriers), or have religious or moral objections to abortion. The second group are those being treated with in-vitro fertilisation (IVF), who might have a low genetic risk but whose embryos are screened for chromosome aneuploidies to enhance their chance of an ongoing pregnancy. PGD for aneuploidy screening (PGD-AS) is mainly applied when a low IVF success rate might be attributable to chromosomal aneuploidies in the embryos, as is sometimes the case in women older than age 37–40 years.

PGD was first described in a clinical setting in a groundbreaking report published in 1990, which had a great effect on UK legislation with respect to embryo research. Preliminary experiments had, however, been described several years earlier. The first application for PGD was in patients who were carriers of an X-linked disease and had thus one chance in four of having an affected child. Sequences on the Y-chromosomes were amplified by PCR to discriminate male from female embryos, and only female embryos were transferred. Since then, PCR has been used and refined for diagnosis of several of the more common monogenic diseases. In the early 1990s, a method that allowed single-cell analysis at the chromosomal level was described; fluorescence in-situ hybridisation (FISH) has since replaced PCR as a reliable method for the sexing of embryos, and has been widely used for PGD-AS and for detection of imbalanced forms of chromosomal aberrations.

Here, we discuss methods used for diagnosis of genetic diseases, indications for PGD and PGD-AS, results obtained with the techniques, and subsequent outcomes of pregnancies. We then look ahead at some of the new methods being introduced.

In-vitro diagnostic procedures

Procedures used to obtain oocytes through ovarian hyperstimulation, IVF techniques such as intracytoplasmic sperm injection, and embryo culture conditions have been widely reviewed elsewhere and are considered outside the scope of this review.

Biopsy of polar bodies and embryos

Polar-body biopsy

Polar bodies can be biopsied without affecting an egg’s rate of fertilisation or eventual cleavage of the embryo, and can be used to deduce the genotype of the oocyte. To obtain polar bodies, a slit is made in the zona pellucida by mechanical means (with sharp needles) or with laser technology. The polar body is then gently drawn out of the egg with a biopsy pipette.

Verlinsky and colleagues pioneered the approach, to begin with on the first polar body only and later on the second (extruded after fertilisation and completion of the second meiotic division) to increase accuracy of diagnosis. In a large series of first and second polar-body analyses for single-gene disorders, Verlinsky and co-workers correctly identified a genetic disorder in 98% (157 of 160) of oocytes tested.

Search strategy and selection criteria

We did a PubMed search with the phrase "preimplantation genetic diagnosis" for articles published between 1989 and 2003. Other key phrases used were single-cell PCR, comparative genomic hybridisation, and any monogenic disease. Also included were a selection of the most important or trend-setting articles on the subject. We limited our search to articles published in English.
Cleavage-stage biopsy

Cleavage-stage biopsy is a widely used technique, for which embryos are grown in vitro until they reach their third division (when they have six or more cells), which occurs on the third day after insemination. The zona pellucida is then breached, using an acid solution (Tyrode’s solution) or laser technology. A biopsy pipette is introduced through the hole into the embryo and one or two blastomeres are gently aspirated (figure 1). Alternatives to aspiration are extrusion, which involves making a hole in the embryo and squeezing the cells out, and fine-needle aspiration, though these techniques are less widely used. Results of a retrospective study indicate no difference in implantation potential between embryos from which two cells are taken and non-biopsied embryos obtained after intracytoplasmic sperm injection. However, doubt remains about whether the biopsy of one cell would not be more detrimental to the embryo than biopsy of two cells. Randomised prospective studies to address this question are underway.

Blastocyst biopsy

The blastocyst is the latest stage at which an embryo can be biopsied. The advantage of biopsy at this stage is that more cells can be obtained, but the disadvantages are that only about 36% of embryos mature this far and that little time is left for diagnosis, since embryos should be transferred before day 5 or 6. Hence, blastocyst biopsy has been attempted by only one centre to date. Analysis of cells obtained

PCR

PCR is used to amplify sufficient DNA from cells obtained from an oocyte or embryo to diagnose monogenic diseases. In brief, a polar body or a blastomere is removed from the embryo. C: deposition of blastomere in medium. D: removal of second blastomere.

Another way to identify chromosomal aberrations is to use comparative genomic hybridisation, a new technique introduced by two groups. Here, pre-amplified DNA from a single test cell is labelled with one fluorochrome—eg, red—and then mixed with pre-amplified DNA from a control sample labelled with a different fluorochrome—eg, green—with which it is compared. The mixture is introduced by two groups. Here, pre-amplified DNA from a single test cell is labelled with one fluorochrome—eg, red—and then mixed with pre-amplified DNA from a control sample labelled with a different fluorochrome—eg, green—with which it is compared. The mixture is

FISH

FISH is the most frequently used method for analysis of the chromosomal complement of blastomeres. Collected cells are spread on a glass microscope slide, after which DNA probes labelled with fluorochromes specific for the chromosomes of interest are applied to their nuclei (figure 2). The type and number of FISH probes used depends on the indication: for sexing, only two probes are needed (for the X and Y chromosomes), though probes for autosomal chromosomes are often added to check for aneuploidy; for identification of translocations, two or three probes are used as explained later; for aneuploidy screening, the number of chromosomes that can be analysed simultaneously is limited by the number of fluorochromes available—kits that contain probes for chromosomes X, Y, 13, 18, and 21 (figure 3), or for chromosomes X, Y, 13, 16, 18, 21, and 22 are available, but separate probes can only usually be obtained with a red or a green label. Mixing of two colours and the application of two, or even three, rounds of FISH can enhance the number of chromosomes analysed simultaneously to nine with acceptable efficiency. In large series, the approximate FISH error level is about 10%.

Comparative genomic hybridisation

Another way to identify chromosomal aberrations is to use comparative genomic hybridisation, a new technique introduced by two groups. Here, pre-amplified DNA from a single test cell is labelled with one fluorochrome—eg, red—and then mixed with pre-amplified DNA from a control sample labelled with a different fluorochrome—eg, green—with which it is compared. The mixture is
applied to a normal metaphase spread, and the colour ratio measured. Areas with more red indicate that the test sample contained more of this genetic material, whereas areas showing more green indicate that the test sample contained too little of this genetic material.

The advantage of comparative genomic hybridisation over FISH is that the whole chromosome complement is analysed, though polyploidy and balanced translocations cannot be detected. The disadvantage is that the whole procedure takes about 72 h, which is why the method is either applied to polar bodies, leaving 5 days for analysis, or to cells obtained at the cleavage stage of development, after which embryos are cryopreserved and transferred in a later cycle if identified as healthy.34,35 The time taken to complete the procedure could be shortened by replacing the metaphase spread with microarrays of carefully chosen sequences from all 24 chromosomes, so-called microarray comparative genomic hybridisation.36 This technique is described under future developments.

Cryopreservation of biopsied embryos
After PGD, few embryos usually remain for cryopreservation.6 Although most centres do cryopreserve surplus embryos, the survival rate of the embryos is extremely low, and only one pregnancy has been described after standard procedures were followed.37–39 Jericho and colleagues40 have, however, adapted these standard procedures to make the freezing and thawing processes more gentle, and have successfully applied their new technique to embryos analysed with comparative genomic hybridisation.40 The group40 noted a survival rate of 75% (by comparison with 43% with the standard protocol) and an implantation rate of 12%; 50 embryos were transferred in 36 transfer procedures, leading to six ongoing pregnancies.

Indications for PGD and PGD-AS
Monogenic diseases
PCR was the first technique developed for the analysis of DNA from single cells. That monogenic diseases were the first genetic abnormalities to be diagnosed in embryos is, therefore, not surprising. PGD in general and single-cell PCR in particular are demanding labour-intensive techniques however, so only the most common monogenic diseases have been studied extensively.

One such disease is cystic fibrosis, which has a prevalence of one in 2500 births in white people and is caused, in most instances, by the same mutation—namely the ΔF508 mutation. A multitude of reports describe protocols for preimplantation diagnosis of the disease,13,14,41–48 which was the first to be identified by PGD.41 Several methods of PGD have also been described for a group of autosomal recessive diseases with a high prevalence in certain populations—ie, defects in the β globin gene, such as sickle-cell anaemia (in African populations) and β thalassaemia (in Mediterranean populations).49–51 Spinal muscular atrophy has also received a lot of attention.52–54

Autosomal dominant diseases—eg, myotonic dystrophy,55,56 Huntington’s disease,59,60 and Marfan’s syndrome61–63—are less prevalent than autosomal recessive diseases. However, because the risk to their offspring is 50%, rather than 25% for recessive diseases, individuals with an autosomal dominant disease will more readily opt for PGD.

X-linked diseases, such as Duchenne muscular dystrophy and hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency, were among the first for which PGD was undertaken.3 With a simple technique, the sex of the embryos is ascertained and all male embryos disposed of. A drawback of this approach is that half of the discarded male embryos are healthy and half of the female embryos transferred are carriers of the condition. For more and more X-linked diseases, the specific genetic defect has now been identified, however, allowing a specific DNA diagnosis. Again, most reports are for PGD methods for the more frequent X-linked diseases, such as Duchenne muscular dystrophy and fragile X syndrome46–52 (which should not be diagnosed through sexing because girls can also be affected). Ethically, for X-linked recessive diseases, most would agree that to transfer non-carrier girls and healthy boys is preferable than to transfer carrier girls.68,69

The third report of the European Society for Human Reproduction and Embryology (ESHRE) PGD consortium,7 which presents data from 26 different PGD centres, lists 33 monogenic diseases for which PGD had been applied. The list is comparable to the list of diseases for which prenatal diagnosis is undertaken, though it is shorter. We do not believe that the list will increase in

Figure 3: Result of five-colour FISH applied to nuclei of single blastomere
Different chromosomes are identified with their number. A: male nucleus (X and Y chromosome present). B: female nucleus (two X chromosomes present).
length at a rapid rate, because only large PGD centres have the time and resources needed to research and develop the needed tests. The table gives an overview of monogenic diseases for which PGD has been assessed in individuals with up-to-date technologies.14,23,25,44,47,50,53,57,58,63,65,70–83

Table

<table>
<thead>
<tr>
<th>Monogenic diseases for which PGD protocols have been assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods and numbers of clinical pregnancies exceeding 20 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Indication</th>
<th>Method</th>
<th>Number of treatment cycles</th>
<th>Number of clinical pregnancies (gestation >20 weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ao et al, 1998</td>
<td>Familial adenomatous polyposis coli</td>
<td>Primer extension pre-amplification + PCR for mutation</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Strom et al, 1998</td>
<td>Autosomal dominant retinitis pigmentosa</td>
<td>First and second polar body, nested multiplex</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Strom et al, 1998</td>
<td>Cystic fibrosis</td>
<td>First and second polar body, nested multiplex</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Kulie et al, 1999</td>
<td>β thalassaemia</td>
<td>First and second polar body, nested multiplex</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>Van de Velde et al, 1999</td>
<td>21-hydroxylase deficiency</td>
<td>Fluorescent PCR of mutation</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Kanavakis et al, 1999</td>
<td>β thalassaemia</td>
<td>Denaturing gradient gel electrophoresis for 12 different mutations</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Sermon et al, 1999</td>
<td>Marfan’s syndrome</td>
<td>Fluorescent PCR of marker</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Ray et al, 2000</td>
<td>Ornithine transcarbamylase deficiency</td>
<td>Nested PCR (mutation + marker)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Dreesen et al, 2000</td>
<td>Cystic fibrosis</td>
<td>Fluorescent marker multiplex</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Sermon et al, 2000</td>
<td>Medium-chain acyl-CoA dehydrogenase deficiency</td>
<td>Fluorescent PCR of mutation</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>De Rycke et al, 2001</td>
<td>β thalassaemia, sickle-cell anaemia</td>
<td>Fluorescent PCR of mutation</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Ray et al, 2001</td>
<td>Duchenne muscular dystrophy</td>
<td>Nested multiplex</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Georgiou et al, 2001</td>
<td>Spinal and bulbar muscular atrophy</td>
<td>Fluorescent PCR of mutation</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sermon et al, 2001</td>
<td>Myotonic dystrophy, Huntington’s disease, fragile X syndrome</td>
<td>Nested and fluorescent PCR of mutation</td>
<td>92</td>
<td>19</td>
</tr>
<tr>
<td>Piymongkol et al, 2001</td>
<td>Myotonic dystrophy</td>
<td>Fluorescent multiplex (mutation + marker)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Moutou et al, 2002</td>
<td>Cystic fibrosis</td>
<td>Fluorescent multiplex (mutation + marker)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Harper et al, 2002</td>
<td>Myotonic dystrophy, cystic fibrosis, fragile X syndrome and cystic fibrosis, neurofibromatosis 2, Crouzon</td>
<td>Fluorescent multiplex</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>Sermon et al, 2002</td>
<td>Huntington’s disease exclusion</td>
<td>Fluorescent multiplex</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Hussey et al, 2002</td>
<td>β thalassaemia</td>
<td>Fluorescent sequencing</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Rechitsky et al, 2002</td>
<td>Familial adenomatous polyposis coli, von Hippel-Lindau disease, retinoblastoma, Li-Fraumeni syndrome, neurofibromatosis 1 and 2, familial posterior fossa brain tumour</td>
<td>First and second polar body, nested multiplex</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>D’Vos et al, 2003</td>
<td>Charcot-Marie-Tooth disease type 1A</td>
<td>Fluorescent multiplex</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Fiorentino et al, 2003</td>
<td>Charcot-Marie-Tooth disease type 1A</td>
<td>Fluorescent multiplex and minisequencing</td>
<td>55</td>
<td>15</td>
</tr>
<tr>
<td>Girardet et al, 2003</td>
<td>Retinoblastoma</td>
<td>Fluorescent multiplex</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Moutou et al, 2003</td>
<td>Achondroplasia</td>
<td>Fluorescent PCR of mutation</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Rechitsky et al, 2003</td>
<td>Familial dysautonomia</td>
<td>First and second polar body, nested multiplex</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Goossens et al, 2003</td>
<td>Cystic fibrosis</td>
<td>Fluorescent multiplex (mutation + marker)</td>
<td>22</td>
<td>4</td>
</tr>
</tbody>
</table>

Ethically difficult indications

Since PGD can be viewed as an early form of prenatal diagnosis, many believe that the indications for both types of diagnosis would be similar. However, for some diseases, PGD but not prenatal diagnosis can be defended from an ethical point of view.

In non-disclosure PGD, which has been described for Huntington’s disease but could also be applied to other late-onset diseases, patients do not wish to know their carrier status but want to have disease-free offspring. Their embryos are, therefore, tested without revealing any of the details of the cycle or diagnosis.60 Because non-disclosure embryos are, therefore, tested without revealing any of the carrier status but want to have disease-free offspring. Their late-onset diseases, patients do not wish to know their Huntington’s disease but could also be applied to other indications for both types of diagnosis would be similar. However, for some diseases, PGD but not prenatal diagnosis can be defended from an ethical point of view.

Ethically difficult indications

The main ethical arguments against are that a child is being used as a treatment, hence breaching the Kantian imperative that a person should never be used as a means. Furthermore, how will the child feel when they are told that they were made for the purpose of saving a sibling? Pennings and colleagues,66 however, argue that the Kantian imperative is not violated because the future donor child is not solely made for the purpose of donating stem cells, but will also be loved and cared for by the family as an individual. Careful counselling by a psychologist should be arranged before PGD is used for this purpose to ascertain the real motivations of the prospective parents. Pennings and co-workers also note that a child who is told that they were made to save a sibling will not experience feelings of low self-esteem but will, on the contrary, be proud to have contributed in such an important way to the well-being of a sibling. Furthermore, giving cord blood at birth could be considered something one family member would do naturally for another. Finally, they argued that parents would not hesitate to volunteer an existing child as a bone-marrow donor for a sick sibling, and that it is ethically acceptable to make a child for a reason if it is acceptable to use an existing child for the same reason. Several other authors have reached the same conclusion.65,66,87

For personal use. Only reproduce with permission from The Lancet.
The use of PGD to diagnose risk of late-onset diseases (such as Huntington’s disease and Alzheimer’s disease) and to search for genes that predispose for cancer (BRCA1, BRCA2, Li-Fraumeni, neurofibromatosis 1 and 2) is also ethically debatable. These two groups are distinct in pathology: late-onset genetic diseases have full penetrance, cancer predisposition genes do not; late-onset diseases are often not curable, whereas cancer predisposition syndromes can be treated, although the value of treatment needs to be demonstrated. However, the ethical arguments with respect to PGD for these diseases are quite similar. Many believe PGD is ethically acceptable for these indications because of the heavy burden imposed on patients who are carriers of one of these diseases, be it because of the burden imposed by the eventual fate in late-onset diseases, or because of the burden on the quality of life imposed by far-reaching preventive measures in cancer predisposition syndromes.

Finally, several reports have been published on the use of sexing for social reasons and have provoked mixed reactions. Opponents argue that sex selection for non-medical purposes is sexist and tantamount to discrimination against women. Those in favour argue that sex selection at the embryonic stage of development is preferable to sex selection after prenatal diagnosis, or even after birth. Moreover, they claim that overall sex distribution will not be skewed because only a few people will use PGD to choose their child’s sex. A distinction should be made, however, between sex selection for convenience and for so-called family balancing. In the latter instance, the family should have at least one or two children of one sex before they can ask for a child of the opposite sex. In family balancing, the issues of sex discrimination and skewed sex ratios are avoided, giving the family an increased autonomy without conflicts with other ethical principles.

Sex-linked diseases
Women who are carriers of a recessive X-linked disease have a priori risk of 25% of having an affected boy, but are themselves, like their carrier daughters, healthy. Hence, sexing of embryos with FISH has been used extensively to avoid the birth of boys affected by X-linked disease. As noted previously, however, half of discarded male embryos are healthy and carrier girls cannot be distinguished from healthy girls with this technique. If available, individuals therefore prefer specific DNA diagnosis. Nonetheless, sexing remains a useful method when the gene responsible for a disease is unknown—eg, non-fragile X, X-linked mental retardation—when the search for a specific mutation is judged too difficult—eg, X-linked retinitis pigmentosa—or when individuals do not want to wait for the specific test to be developed—eg, when the woman is already aged older than 37 years.

Chromosomal abnormalities

Reciprocal and Robertsonian translocations
Reciprocal translocations are characterised by the exchange of fragments of DNA between chromosomes, whereas in Robertsonian translocations a whole chromosome is translocated to another through centromeric fusion. Healthy carriers of such translocations are at risk of having children with congenital anomalies and mental retardation due to chromosomal imbalances, or are likely to have recurrent miscarriages or to be infertile (especially if the man is a carrier).

To offer PGD to female carriers of balanced translocations, Munne and colleagues analysed the first polar body of their eggs; if biopsied within a couple of hours after oocyte retrieval, first polar bodies are still in metaphase and can be assessed by chromosome painting—ie, a type of FISH in which chromosomes are identified over their entire length. A major drawback of this method is that only translocations carried by the mother can be analysed. The current most widely used method involves analysis of cleavage-stage embryos. Here, two FISH probes are used for Robertsonian translocations, one locus-specific probe centromeric to the breakpoint of one of the chromosomes involved, and one on the telomere of the other chromosome involved, and three FISH probes are used for assessment of reciprocal translocations—two on the centromeric side of the breakpoints of the chromosomes involved, and a third on one of the telomeres on the other side of the breakpoint. The two or three probes used have to carry a different fluorochrome, and it must be possible to use them together in one assay. Identification of the probes needed for a particular couple can be difficult, since commercially available probes usually come in only two different fluorochromes (red and green). Once identified, the combination of probes centromeric and telomeric to the breakpoints allows embryos that carry an unbalanced chromosomal complement to be distinguished from healthy ones, but cannot help to distinguish between embryos without the translocation or carrying the balanced translocation. Since reciprocal translocations are often different for each couple, a new probe mixture needs to be tested in each instance. Moreover, several centres have shown that a large proportion (over 80%) of embryos are chromosomally abnormal and cannot be transferred, leading to a low pregnancy rate per cycle (but not per transfer) in individuals with reciprocal translocations. However, because of the occurrence of multiple miscarriages or infertility in these patients, PGD is often the only way to achieve an ongoing healthy pregnancy.

Aneuploidy screening

Results of investigations with classic cytogenetic methods indicate that between 23% and 80% of embryos are aneuploid, and use of FISH is providing some information about the types of chromosomal abnormalities and why they arise. For example, Delhanty and colleagues undertook FISH with probes for the X and Y chromosomes to assess embryos discarded after PGD, and noted a range of anomalies, such as monosomy X and mosaics for trisomy/triploidy, and Munne and co-workers noted, after analysis of normally as well as abnormally developing embryos with five-colour FISH for chromosomes X, Y, 13, 18, and 21, that 70% of the abnormally developing embryos were abnormal for at least one of the chromosomes studied. Furthermore, analysing the chromosomal abnormalities in 1255 non-viable cleavage-stage embryos, Marquez and colleagues showed that aneuploidy increases with maternal age (from 1.4% in patients aged 20–34 years to 52.4% in patients aged 40–47 years), whereas polyploidy and mosaicism are related to poor embryo morphology. Considering these data, together with the well documented correlation between advanced maternal age and fetal aneuploidy and the recognition that 50–60% of all spontaneous abortions from clinically recognised pregnancies carry a grossly abnormal and lethal chromosome complement, researchers soon realised that embryos selected based on chromosome complement would improve IVF results in individuals with poor outcome and reduce the number of babies born with chromosomal defects.
PGD-AS has been used to identify problems in individuals of advanced maternal age,29,104 in those in whom embryos have repeatedly not implanted, and in women who have recurrent miscarriages not due to translocations.2,103,105 PGD-AS has, in fact, become the most widely used application of PGD, because of the relative ease of the technique compared with others and because of the large potential group of patients.6 The misdiagnosis rate due to mosaicism. Findings of large retrospective series6,104,105 have indicated a higher implantation rate after polar-body biopsy than without selection through biopsy, and a nonsignificant increase in implantation rate with a significant decrease in spontaneous abortion rate after single blastomere biopsy. More recent data106 indicate that the use of eight or nine different probes (X, Y, 13, 14, 15, 16, 18, 21, and 22) for diagnosis greatly increases implantation rates. However, prospective randomised studies are needed before the real efficiency of PGD-AS is known.3

Outcome
Misdiagnosis
Reports of misdiagnoses are anecdotal, making an approximation of rates of misdiagnosis difficult. In the early days of PGD, one misdiagnosis for sexing, using PCR, and one misdiagnosis for cystic fibrosis in a compound heterozygote embryo were reported. Both misdiagnoses were due to the low efficiency of single-cell PCR, and technical developments—eg, FISH for sexing and multiplex fluorescent PCR—have ruled out the reoccurrence of such errors.21 Munne and colleagues110 reported one misdiagnosis (trisomy 21 after aneuploidy screening) in a series of 57 pregnancies. Pickering and co-workers109 reported one misdiagnosis, for spinal muscular atrophy, in a series of 18 pregnancies.

The third report of the ESHRE PGD consortium106 details the occurrence of eight misdiagnoses in 451 (2%) pregnancies (or of eight in 265 [3%] pregnancies if only those fetal sacs for which a control had been undertaken are counted): five of 145 (3%) pregnancies after PCR (two for sexing [one for Duchenne muscular dystrophy and one for retinitis pigmentosa], one each for β thalassaemia, cystic fibrosis, and myotonic dystrophy) and three of 305 (1%) after FISH (one each for sexing for social reasons, translocation [11;22], and trisomy 21 [after PGD-AS]). We believe the reporting of these misdiagnoses was an important step in the identification of technical flaws and shortcomings, which have led to the adoption of stringent diagnostic criteria.

Pregnancy outcome
Because of the newness and technical complexity of PGD, large series on the practice and outcome of the various techniques involved are rare. Within ESHRE, therefore, the ESHRE PGD consortium was formed to obtain data on PGD cycles and their outcome.11

Of all the treatment cycles in couples whose embryos were tested by PGD in the 26 centres which are members and contribute their data, clinical pregnancies resulted in: 62 of 368 (17%) after testing for structural chromosomal abnormalities, including translocations, 41 of 254 (16%) after sexing, and 119 of 575 (21%) after testing for monogenic diseases. These numbers are lower than would be expected in a regular IVP cycle (20–25%), though it is noteworthy that many embryos are deemed abnormal and cannot therefore be transferred.

These findings contrast with the results for PGD-AS, in which instance patients are not at high risk of having genetically abnormal offspring, but which involves the selection of embryos most likely to implant in the womb. Here, of the 799 cycles reported,1 199 or 25% led to a clinical pregnancy in individuals with a previously poor prognosis because of advanced maternal age, repetitive IVF failure, and recurrent miscarriages. Results of further analyses of these figures indicate that women of advanced age who have had recurrent miscarriages are particularly likely to become pregnant (28%) after PGD-AS, whereas patients who have little success after IVF are less likely to become pregnant (8%). Although the PGD-AS data are not compared with a suitable control group, most believe that PGD-AS increases the chances of pregnancy for patients with a poor prognosis. Wilton noted that most of the large studies published on PGD-AS and its outcome did not include an appropriate control group,108,109,110 but large, multicentre, randomised studies are underway that will, hopefully, provide information on the efficiency of PGD-AS and the groups of individuals most likely to benefit from it.

The ESHRE PGD consortium is also interested in the outcomes of pregnancies after PGD. The most important cause of morbidity and mortality is multiple pregnancy. For this aspect and many others, such as birthweight and rate of congenital malformations, statistics for children born after PGD are comparable to those for children born after intracytoplasmic sperm injection.

In their report,110 the International Working Group on Preimplantation Genetics noted that more than 3000 PGD cycles had been undertaken by mid-2001 since the early 1990s, resulting in a pregnancy rate of about 24%. Nearly 700 children were born as a result of the pregnancies and 5% of the babies had some kind of abnormality. Furthermore, when data for this period from the four most active centres worldwide were combined, a total of 2774 PGD cycles are shown to have resulted in 2265 transfers of embryos to the womb and 652 subsequent clinical pregnancies (29%).110 In the report,110 it is stressed that outcome of pregnancy was comparable to that for IVF populations. The authors of a study on another large cohort of 109 children,111 not included in the ESHRE PGD consortium report, also conclude that children born after PGD are comparable to those born after intracytoplasmic sperm injection with respect to pregnancy and birth parameters, and that PGD is a safe method of avoiding the birth of children with genetic defects.

Future developments
New methods for diagnosis of monogenic diseases are being developed at a rapid rate, some of which are very suitable for use with single-cell PCR.

Real-Time PCR
In real-time PCR, the accumulation of PCR product is measured during cycling, when PCR is in its exponential phase, instead of after the process is complete. To differentiate between different PCR products—eg, a gene with a mutation and a wild-type gene—molecular beacons are added to the reaction mixture. These beacons consist of short oligonucleotides complementary to the region of interest within the PCR fragment. The oligonucleotides have complementary ends, one of which carries a fluorochrome and the other a quencher, so that if they do not anneal to the DNA and remain in solution the beacons are folded on themselves and do not fluoresce.112 Other methods are also commercially available—eg, fluorescence resonance energy transfer (FRET). In real-time PCR, short PCR fragments are generated, thus reducing the likelihood of allele drop-out. Moreover,
continuous measurement of PCR product during the exponential phase of the process gives a more accurate idea of the homozygous or heterozygous state of a single cell. Real-time PCR has been used for PGD of sex, by analysing the presence of a Y chromosome, and for diagnosis of Tay-Sachs disease.27,28 However, its use has not been described in the diagnosis of mitochondrial diseases, despite the fact that real-time PCR allows for quantitative measurements.

Minisequencing

Minisequencing permits the quick and accurate detection of single nucleotide polymorphisms (SNPs). SNPs are widespread in the genome and can be either true polymorphisms, which do not affect functioning of genes, or mutations. SNPs can be used as linked polymorphisms to enhance the accuracy of the PGD, in the same way that microsatellites are used in duplex and multiplex PCR for PGD. The advantage of SNPs is that they are more common than microsatellites, thus giving a higher chance of finding a linked informative SNP, and that they can be detected with short PCR fragments. When starting from a single cell, the amplification of small stretches of DNA is much more efficient than for larger fragments; thus SNP analysis is ideally suited for single-cell PCR. In PGD, only a few loci need to be analysed simultaneously—eg, two mutations and two SNPs—so minisequencing on microcapillary systems are ideal.15

Microarrays

Mutation-specific primers can also be spotted on microarrays,11 which are another promising development. First described in the analysis of expression in cells, microarrays have moved from RNA to DNA technology. Small glass slides or other supports are covered with well-defined DNA fragments, to which fluorescently labelled sample DNA is then allowed to hybridise. The full array can be read by an automated system. Microarrays could be used in PGD in two ways. First, they could be used to diagnose common genetic diseases caused by more than one mutation—eg, cystic fibrosis (associated with more than 1000 mutations) or β thalassemia.11 Because only small stretches of DNA need to be amplified, preliminary work-up should be simple and straightforward, and analysis of microarrays could be standardised for all patients. Second, microarrays could be used in comparative genomic hybridisation, where they would replace the metaphase spread to which the mixture of test and comparative DNA are hybridised. In this instance, the microarray would contain not sequences from one gene but sequences spread over the whole genome. The specificity of the sequences in the microarrays would lead to shorter hybridisation and computer analysis times than arise with comparative genomic hybridisation, obviating the need for polar-body analysis or cryopreservation. Other advantages of microarray comparative genomic hybridisation would be its greater resolution (100–200 kb instead of 2–10 Mb) compared with the use of metaphase spreads, while the important standardisation of the whole procedure by use of computers would allow more IVF centres to use microarray comparative genomic hybridisation routinely for aneuploidy screening.2,16

Conflict of interest statement

None declared.

Acknowledgments

We thank Catherine Staessen, Hubert Joris, and Elvire Van Assche for their advice about cryopreservation and aneuploidy issues, and for their critical reading of the manuscript.

References

For personal use. Only reproduce with permission from The Lancet.