Ribonuclease References
Refolding of denatured RNAse In Vitro:
M. Sela, F. H. White Jr, and C. B. Anfinsen (1957)
Reductive Cleavage of Disulfide Bridges in Ribonuclease
Science, 125, 691-692.
Frederick H. White (1961)
Regeneration of Native Secondary and Tertiary Structures by Air Oxidation of
Reduced Ribonuclease
J. Biol. Chem, 236, 1353-1360.
C. B. Anfinsen and Edgar Haber (1960)
Studies on the Reduction and Re-formation of Protein Disulfide Bonds
J. Biol. Chem, 236, 1361-1363.
C B. Anfinsen, E. Haber, M. Sela, and F. H. White, Jr. (1961)
The Kinetics of Formation of Native Ribonuculease During Oxidation of the Reduced
Polypeptide Chain
PNAS, 47, 1309-1314.
Nobel Lectures:
Christian B. Anfinsen (1973)
Principles that Govern the folding of Protein
Chains.
Science, 181, 223-230.
Stanford Moore and William H. Stein
Chemical Structures of Pancreatic Ribonuclease and Deoxyribonuclease
Science, 180, 4 May 1973, 458-464.
Folding of Coiled Coils References
R.S. Hodges, J. Sodek, L.B. Smillie and L. Jurasek (1973)
Tropomyosin: Amino Acid Sequence and Coiled-coil Structure
In Cold Spring Harbor Symposia on Quantitative Biology: The Mechanism
of Muscle Contraction,Vol. 37, pp. 299-310.
Sherwin S. Lehrer and Amy Yuan (1998)
The Stability of Tropomyosin at Acid pH: Effects of Anion Binding
J. Structural Biology, 122, 176-179.
Sherwin S. Lehrer, Yude Qian and Soren Hvidt (1989)
Assembly of the Native heterodimer of Rana esculenta Tropomyosin by Chain
Exchange
Science, 246, 926-928.
Marisa C. Suarez, Sherwin S. Lehrer and Jerson L. Silva (2001)
Local heterogeneity in the pressure denaturation of the coiled-coil tropomyosin
because of subdomain folding units.
Biochemistry, 40, 1300-1307.
Randy Rasmussen, Dominic Benvegnu, Erin K. O'Shea, Peter S. Kim and Tom Alber
(1991)
X-ray scattering indicates that the leucine zipper is a coiled coil.
PNAS, 88, 561-564.
Carolyn Cohen and David A.D. Parry (1990)
Alpha-Helical coiled coils and bundles: How to design an alpha-helical protein.
Proteins, 7, 1-15.
Erin K. O'Shea, Juli D. Klemm, Pater S. Kim and Tom Alber (1991)
X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled
coil.
Science, 254, 539-544.
Pehr B. Harbury, Tao Zhang, Peter S. Kim and Tom Alber (1993)
A switch between two-, three- and four-stranded coiled coils in GCN4 leucine
zipper mutants.
Science, 262, 1401-1407.
NMR Refolding of Cytochrome C
Collagen Conformation and Chain Folding References
Structure and Stability:
Alexander Rich and Francis H. C. Crick (1961)
The Molecular Structure of Collagen
J.Mol.Biol., 3, 483-506.
John Josse and William F. Harrington (1964)
Role of Pyrrolidine Residues in the Structure and Stabilization of Collagen
J. Mol Biol., 9, 269-287.
W. F. Harrington (l964)
On the Arrangement of the Hydrogen Bonds in the Structure of Collagen.
J. Mol. Biol., 9, 6l3-6l7.
Segal, D.M (1969)
Polymers of Tripeptides as Collagen Models VII.Synthesis and Solution Properties
of Four Collagen -like Polyhexapeptides.
J. Mol. Biol., 43, 497-517.
F. Harrington and N. V. Rao (1970)
Collagen Structure in Solution I. Kinetics of Helix Regeneration in Single Chain
Gelatins.
Biochem., 9, 3712-3724.
See also the papers II-V which follow the above in the Journal.
J. Bella, M. Eaton, B. Brodsky & H.M. Berman (1994)
Crystal and molecular structure of a collagen-like peptide at 1.9? resolution.
Science, 266, 75-81.
Biosynthesis and In Vivo Maturation:
D. J. Prockop et al (l979)
The Biosynthesis of Collagen and its Disorders (First of Two Parts)
New England Journal of Medicine 30l, No.l, l3-23.
J. Prockop et al (l979)
The Biosynthesis of Collagen and its Disorders (Second of Two Parts)
New England Journal of Medicine 30l, No. 2, 77-85.
Liselotte J. Fessler and John H. Fessler (1981)
Characterization of Type III Procollagen from Chick Embryo Blood Vessels
J. Biol. Chem., 254, 233-239.
B. Bachinger et al (1981)
Chain Assembly Intermediate in the Biosynthesis of Type III\j\Procollagen in
Chick Embryo Blood Vessels
J. Biol. Chem., 256, 13193-13199.
Steinmann et al (1984)
Cysteine in the Triple-helical Domain of One Allelic Product of the pro-alpha1(I)
Gene of Type I Collagen Produces a Lethal Form of Osteogenesis Imperfecta
J. Biol. Chem., 259, lll29-lll38.
Bonadio et al (l985)
Altered Triple Helical Structure of Type I Procollagen in Lethal Perinatal Osteogenesis
Imperfecta
J. Biol. Chem., 260, l734-l742.
Bonadio & P. Byers (l985)
Subtle structural alterations in the chains of type I procollagen produce osteogenesis
imperfecta type II
Nature, 3l6, 363-365.
C.T. Baldwin,C.D. Constantantinou, K. W. Dumars, and Darwin J. Prockop (1989)
A single base mutation that converts glycine 907 of the alpha2(I) chain of type
I procollagen to aspartate in a lethal variant of osteogenesis imperfecta.
J. Biol. Chem., 264, 3002 - 3006.
Reviews:
Jurgen Engel and Darwin J Prockop (1991)
The zipper-like folding of collagen triple helices and the effects of mutations
that disrupt the zipper.
Ann. Rev. Biophys. Biophys. Chem. 20, 137-152.
M.van der Rest and R. Garrone (1990)
Collagens as multidomain proteins.
Biochimie, 72, 473-484.
Peter H. Byers, Gillian A. Wallis, Marcia C Willing (1991)
Osteogenesis imperfecta: translation of mutation to phenotype.
J. Medical Genetics, 28, 433-442.
Helena Kuvaniemi, Gerard Tromp and Darwin J. Prockop
Mutations in collagen genes: causes of rare and some common diseases in humans.
FASEB J., 5, 2052 - 2060.
J. Baum and B. Brodsky (1997)
Real time NMR investigations of triple helix folding and collagen folding diseases.
Fold. Des., 2, R53-R60.
Back to Protein Folding
Homepage