ESSENTIALS OF INTRODUCTORY CLASSICAL MECHANICS

GENERAL INDEX

Absolute zero (of temperature), 379, 384(S)
Angular momentum, 272

Acceleration, 14
 accelerating frames of reference, See Fictitious force
 angular, 267, 270
direction of, 316
 average, 18, 19(S)
orbital, 364(C)
 centripetal, 15
principal axes, 335(C)
 constant, 15, 19(S)
 relation between vector and scalar, 316
 derivative of velocity, 17, 19(S)
spin, 364(C)
due to gravity, 16, 19(S)
 vector, 315–316, 319, 321–322(S)
and mass, 60
relation to linear velocity, 267

Action, principle of least, 156(N)
unit of, 267

Adiabatic expansion or compression, 389(P), 398–400(C)
vctor, 313–315, 321–322(S)

Airplane wing
 lift of, 415
Atwood’s machine, 248(C)

Air resistance, 88(N)
 composition of planetary, 394(C)
 reduction of, 88(N)
atomic mass unit, u, 381, 385(S)

Air speed, 42(C)
Atomizer, 422(P)

Alembert, Jean Le Rond d’, 156(N)
Atwood’s machine, 248(C)

Amplitude, See Oscillation, amplitude of
Automobile engine, 400(C)

Angle
 Average
 method of calculating, 17
 triangular bracket notation for, 378
 unit of, 66
Avogadro’s number, 381

Angular acceleration, 267, 270

(O) – Overview (S) – Summary (P) – Problems (C) – Complete Solutions (N) – Supplementary Notes

519
GENERAL INDEX

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avogadro's number, 385(S)</td>
<td></td>
</tr>
<tr>
<td>Axis</td>
<td></td>
</tr>
<tr>
<td>center of mass, 273–274</td>
<td></td>
</tr>
<tr>
<td>principal, 335(C)</td>
<td></td>
</tr>
<tr>
<td>of rotation, 266, 274</td>
<td></td>
</tr>
<tr>
<td>of symmetry, 274</td>
<td></td>
</tr>
<tr>
<td>Balance</td>
<td></td>
</tr>
<tr>
<td>beam, 77(C), 95(P)</td>
<td></td>
</tr>
<tr>
<td>spring, 77(C), 95(P)</td>
<td></td>
</tr>
<tr>
<td>Baryonic matter, 54(N)</td>
<td></td>
</tr>
<tr>
<td>Baseball</td>
<td></td>
</tr>
<tr>
<td>effect of spin on, 415</td>
<td></td>
</tr>
<tr>
<td>Beam balance, 77(C), 95(P)</td>
<td></td>
</tr>
<tr>
<td>Bernoulli, Johann, 156(N)</td>
<td></td>
</tr>
<tr>
<td>Bernoulli's equation, 414, 418(S)</td>
<td></td>
</tr>
<tr>
<td>Beta decay, 155(N)</td>
<td></td>
</tr>
<tr>
<td>Big bang (origin of universe), 159(N)</td>
<td></td>
</tr>
<tr>
<td>Binary stars, 108(C)</td>
<td></td>
</tr>
<tr>
<td>Block and tackle, 238(P), 246–247(C)</td>
<td></td>
</tr>
<tr>
<td>Boltzmann's constant, 379, 385(S)</td>
<td></td>
</tr>
<tr>
<td>Bubble, soap</td>
<td></td>
</tr>
<tr>
<td>surface tension of, 416, 422(P), 431(C)</td>
<td></td>
</tr>
<tr>
<td>Buoyancy</td>
<td></td>
</tr>
<tr>
<td>center of, 412, 418(S)</td>
<td></td>
</tr>
<tr>
<td>force of, 411, 418(S)</td>
<td></td>
</tr>
<tr>
<td>torque due to, 412, 418(S)</td>
<td></td>
</tr>
<tr>
<td>Carnot cycle, 402(C)</td>
<td></td>
</tr>
<tr>
<td>efficiency of, 402(C)</td>
<td></td>
</tr>
<tr>
<td>Carnot, N.L. Sadi, 402(C)</td>
<td></td>
</tr>
<tr>
<td>Celsius scale (of temperature), 379, 385(S)</td>
<td></td>
</tr>
<tr>
<td>Center of buoyancy, 412, 418(S)</td>
<td></td>
</tr>
<tr>
<td>Center of gravity, 301(C)</td>
<td></td>
</tr>
<tr>
<td>Center of mass, 166</td>
<td></td>
</tr>
<tr>
<td>motion of, 167</td>
<td></td>
</tr>
<tr>
<td>rotation axis through, 273–274</td>
<td></td>
</tr>
<tr>
<td>of system in terms of subsystems, 168, 176(P), 188–190(C)</td>
<td></td>
</tr>
<tr>
<td>Centigrade scale (of temperature), 379, 385(S)</td>
<td></td>
</tr>
<tr>
<td>Centripetal acceleration, 15</td>
<td></td>
</tr>
<tr>
<td>Chadwick, James, 155(N)</td>
<td></td>
</tr>
<tr>
<td>Chaos theory, 415, 441(O)</td>
<td></td>
</tr>
<tr>
<td>application to turbulent flow, 415, 441(O)</td>
<td></td>
</tr>
<tr>
<td>Charge</td>
<td></td>
</tr>
<tr>
<td>unit of, 63</td>
<td></td>
</tr>
<tr>
<td>Classical mechanics</td>
<td></td>
</tr>
<tr>
<td>assumptions of, 10–11, 440(O)</td>
<td></td>
</tr>
<tr>
<td>fundamental concepts of, 10–11, 19(S), 51(N), 116, 440(O)</td>
<td></td>
</tr>
<tr>
<td>reasons for studying, 1(O)</td>
<td></td>
</tr>
<tr>
<td>Closed system, 117</td>
<td></td>
</tr>
<tr>
<td>Collision, 169–170</td>
<td></td>
</tr>
<tr>
<td>elastic, 169</td>
<td></td>
</tr>
<tr>
<td>impact parameter, 175(P), 186(C)</td>
<td></td>
</tr>
<tr>
<td>inelastic, 169</td>
<td></td>
</tr>
<tr>
<td>neglecting friction in, 224(C)</td>
<td></td>
</tr>
<tr>
<td>Conservation laws, 199(N)</td>
<td></td>
</tr>
<tr>
<td>conservation of angular momentum, 157(N), 272, 321(S)</td>
<td></td>
</tr>
</tbody>
</table>

(O) – Overview (S) – Summary (P) – Problems (C) – Complete Solutions (N) – Supplementary Notes

520
conservation of energy, 117, 124–125(S), 155–157(N), 168, 271, 382
conservation of momentum, 156–157(N), 165, 199(N)
non-conservation of parity, 157(N)
relation to invariance of physical law, 156–157(N)
Continuity, equation of (for fluids), 413, 418(S)
Controlled experiment, 50(N)
Coordinate system, 12, 52(N)
Cosmology, 53(N), 158–159(N), 392(C)
galaxy formation, 392(C)
inflation, 54(N)
Coulomb, C, 63
Cowan, Clyde L. Jr., 155(N)
Critical density, 54(N)
Critical speed
for laminar flow, 415
Cross product, 312–313, 322(S)
component form, 312, 322(S)
'Crumple zones', in car design, 224(C)
Dark energy., 54(N)
Dark matter, 54(N)
Degrees of freedom, 381
Derivative, 14, 19(S)
partial, 122
as tangent to curve, 17
units of, 15
Differential equation, 65
boundary conditions, 79(C), 82(C)
change of variables, 79(C)
Differential form, 399(C)
Differentiation
chain rule for, 288(C)
finding maxima and minima using, 33(C), 100(C), 215(C)
of unit vector, 288(C)
Dimensions
checking of, See Problem solving, dimensional analysis
Displacement (of floating objects), 412
Displacement (of position), 14, 117
Distance, 14
unit of, 10
Dot product, 118, 125(S)
component form, 118
Dynamics, 11
Earth's surface
example of non-Euclidean geometry, 52–53(N)
reference frame of, 207
Einstein, Albert, 11
Electromagnetic force
role in friction, 204
Electromagnetism, 63
electromagnetic waves, 63
Energy, 116–122, 124(S)
conservation of, 117, 124–125(S), 155–157(N), 168, 271, 382
energy density, 392(C)
GENERAL INDEX

internal, 168–169, 199(N), 205, 381, 384(S)
kinetic, See Kinetic energy
“locally” conserved, 139(C)
“lost” (apparently not conserved), 156(N), 168, 199(N)
mass, 156(N)
mechanical, 121, 124(S), 199(N), 206, 209(S)
potential, See Potential energy
unit of, 116
work, See Work
Equation of continuity (for fluids), 413, 418(S)
Equilibrium, 65, 68(S), 122
and potential energy, 122, 124(S)
of rigid bodies, See Statics
stable, 65, 122, 124(S)
thermal, 380
Equipartition
principle of, 381
Equivalence
Principle of, 62, 67(S), 208
Euclid, 52(N)
Euclidean geometry, 10
Euler, Leonhard, 156(N)
Fahrenheit scale (of temperature), 379, 385(S)
Fermi, Enrico, 155(N)
Fictitious force, 62, 206–208, 209(S), 275, 301(C)
centrifugal, 207
Coriolis, 207
torque due to, 275

Fields, 157–158(N), 200(N)
calculations using, 158(N)
electromagnetic, 158(N), 200(N), 273
electrostatic, 158(N)
gravitational, 11, 157(N)
importance of concept in electromagnetism, 158(N), 200(N)
as macroscopic description of quantum mechanical exchange forces, 158(N), 200(N)
and Newton’s third law, 200(N)
Flotation, See Archimedes’ principle
Flow
of fluid (see also Fluid, Liquids)
Flow lines, 413
Flow tube, 413
Fluid (see also Gas, Liquids)
boundary layer around moving objects, 415
definition of, 410
flow of, 412
laminar flow, 415
real, 415
turbulence of, 415
Fluid mechanics, 409(O), 410
Force, 60
at surface of a liquid, 416–417, 418(S)
bouyant, 411, 418(S)
central, 319
centrifugal, See Fictitious force, centrifugal
conservative, 119–122, 124(S), 206

(O) — Overview (S) — Summary (P) — Problems (C) — Complete Solutions (N) — Supplementary Notes

522
contact, 64

Coriolis, *See Fictitious force, Coriolis*

Coulomb, *See Force, electrostatic*

as derivative of potential energy, 122, 125(S)
dissipative, 206, 209(S), 383
drag, 206
electromagnetic, 63
electrostatic, 63, 67(S)
electroweak, 64
external, 166
fictitious, *See Fictitious force*
frictional, *See Friction*

fundamental, 61, 63, 89(N)
gravitational, 61, 67(S), 208
interatomic, 204

intermolecular (role in liquids), 409(O), 410, 417

internal, 164, 168
macroscopic, 64, 89(N)
mediated by emission of force particle, 158(N), 200(N)

muscular, 132(C), 138(C)
net, 61

non-conservative, 119, 156(N), 206

normal, 64, 68(S), 168
as rate of change of momentum, 165

spring, 66

strong, 63, 73(C), 199(N)
tension, *See Tension*
total, 61

unit of, 60

weak, 63

work done by, 118

Frame

reference, *See Reference frame*

Free-body diagram, 218(C)

Freely falling body, 16, 19(S)
Frequency, 66
angular, 66

frequency
unit of, 66

Friction, 88(N), 204–206, 209(S)

between two moving surfaces, 205
coefficient of kinetic, 204, 209(S)
coefficient of static, 205, 209(S)

for object moving in liquid (see also Viscosity), 415
kinetic, 204, 209(S)

mechanism of, 204

reduction of, 88(N)
static, 204–205, 209(S)
work done by, 205

Galileo, 89(N)

Gas

Bernoulli’s equation, 415
gas constant, \(R \), 381, 385(S)
ideal, *See Ideal gas*

internal energy of, 381–383
molar heat capacity, 382, 384(S)
non-ideal, van der Waals equation for, 441(O)

Golf ball
effect of spin on, 415

Grand unified theory, 90(N)

Gravitation
measurement of G, 111(Problem Answers)
Gravity, 61, 67(S), 208
acceleration due to \(\ddot{g} \), 16, 19(S)
center of, 301(C)
gravitational constant, G, 62
gravitational field, 11, 157(N)
gravitational potential energy, 116, 120, 125(S)

Newton’s theory of, 51(N)
of spherically symmetrical body, 62, 108(C)
in system of three bodies, 155(N)

Ground speed, 42(C)

Gyroscope, 319

rotation of, 345(C)
precession of, 345(C)

Heat, 199(N), 381–382, 384(S)
latent, of vaporization or fusion, 417, 418(S)
molar heat capacity, 382, 384(S)
specific heat capacity, 384(S)

Heat engine, 380

Hertz, Hz, 66

Hooke’s law, 66

Hubble constant, 54(N)

Hubble’s law, 54(N)

Hydraulic jack, 419(P), 424–425(C)

Hydrometer, 420(P), 427–429(C)

Ideal gas, 384(S)
adibatic expansion or compression, 389(P), 398–400(C)
diatomic, 382, 389(P), 396–398(C)
force exerted by (see also pressure), 377–378, 384(S)
ideal gas law, 380, 384(S)
internal energy of, 381–383
monatomic, 383, 388(P)
polyatomic, 381
practical usefulness of concept, 383
pressure of, 379–381, 384(S)
work done by/on, 382–383, 384(S)

Idealized models, 88(N)

applications of, 89(N), 140–141(C), 199(N)

improved, 441(O)

limitations of, 88(N)

massless rope, 65

retention of physical principles, 83(C), 88(N), 141(C)

Ideal liquid, See Liquids, ideal, 410, 412, 418(S)

Impact parameter, 175(P), 186(C)

Impulse, 170

Impulse-momentum theorem, 170

Incompressibility (of liquids), 410

Indeterminate problems, 333–334(C)

Inertia

(O) = Overview (S) = Summary (P) = Problems (C) = Complete Solutions (N) = Supplementary Notes

524
law of, 60
moment of, See Moment of inertia
Integral, 17, 19(S)
Integration
as area under curve, 17
as limit of summation, 292(C)
umerical, 89(N), 155(N), 199(N)
Intermolecular forces
role in liquids, 409(O), 410, 417
Jack, hydraulic, 419(P), 424–425(C)
Joule, J, 116
Kelvin, K, 379
Kelvin, William Thomson, Lord, 380, 402(C)
Kilogram, kg, 60
Kinematics, 11
Kinetic energy, 116–117, 124(S)
of flowing liquid, 414
of rigid body, 268–269, 276
rotational, 268–269, 276
of system of particles, 168
Lagrange, Comte Joseph Louis, 156(N)
Lagrangian, 156(N)
Laminar flow, 415
Latent heat
of vaporization or fusion, 417, 418(S)
Least Action, principle of, 156(N)
Lift
of airplane wing, 415
Light
speed of, 10–11

Liquids (see also Fluid), 409(O), 410
Bernoulli’s equation, 414, 418(S)
density of, 410
difference from solids, 410
equation of continuity, 413, 418(S)
ideal (incompressible), 410, 412, 418(S)
ideal, steady flow of, 412
mass flow rate, 413
molecular picture of surface, 415
pressure, dependence on depth, 411, 418(S)
presure, lack of dependence on direction or shape of container, 411, 418(S)
presure of, 410
volume flow rate, 413, 418(S)

Macroscopic objects
as point particles, 166–167, 199(N), 297(C)
as systems of particles, 89(N)

Mass
atomic, 381
center of, See Center of mass
definition of, 60
as form of energy, 156(N)
gravitational, 62, 208
inertial, 62, 208
unit of, 60
Mass flow rate, 413
Maxwell-Boltzmann distribution, 394(C)
Mechanics, fluid, 409(O), 410
GENERAL INDEX

Mechanics, quantum, 11, 398(C)
Meter, m, 10
Molar heat capacity, 382, 384(S)
 at constant pressure, 389(P)
 at constant volume, 389(P)
Mole, mol, 381
Molecule
 determination of size using surface tension
 and latent heat, 417
Moment of inertia, 268, 270
 calculation of, 276
 dependence on choice of axis, 270
 table of standard values, 277
Momentum, 165–167
 angular, See Angular momentum
 conservation of, 156–157(N), 165, 199(N)
 of system of particles, 167
 unit of, 165
Motion
 circular, 15, 19(S)
 in one dimension, 15
 of rigid body, 267, 273, 313–317, 319–320,
 321–322(S)
 rotational, See Rotation
 translational, 266, 319
Muon, 11
Natural phenomena
 mathematical description of, 10, 19(S)
 as subject of physics, 50(N)
Neutrino, 155(N), 157(N)
Newton, N, 60
Newton’s constant, G, 62
 measurement of, 111(Problem Answers)
Newton’s cradle, 70(P)
Newton’s laws
 first, 60, 67(S)
 second, 60, 67(S), 270
 third, 164, 200(N), 204, 271
 validity of, 61
Non-Euclidean geometry, 11, 52(N)
Non-inertial frames of reference, See Fictitious force
Nucleus
 atomic, 63
Numerical coefficients
 dimensions and units of, 104(C)
Numerical results
 number of significant figures, 27(C)
Nutation
 of gyroscope, 345(C)
Omega, 54(N)
Oscillation
 about equilibrium, 66, 68(S)
 about minimum of potential energy, 122–123
 amplitude of, 81(C)
 frequency of, 66
 period of, 66
Otto cycle
 relation to auto engine, 402(C)

(O) – Overview (S) – Summary (P) – Problems (C) – Complete Solutions (N) – Supplementary Notes

526
Parallel-axis theorem, 276
Parity, 157(N)
Pascal, 378
Pauli, Wolfgang, 155(N)
Pendulum
 ballistic, 239(P)
 conical, 96(P)
 simple, 71(P)
Perpendicular-axis theorem, 276
Phases of matter, 410
Phase transition, 410, 418(S)
 gas-liquid, 410, 417
 liquid-solid, 417
Photons, 390(C)
Physics-Problem Land (idealized models), 88(N)
Poiseuille's law, 445(P)
Position
 integral of velocity, 16, 19(S)
 measurement of, 10-11
 relative, 16
 specification of, 12
Potential
 electric, 158(N)
 gravitational, 158(N)
 as integral of field, 158(N)
Potential energy, 116, 124(S)
 arbitrary choice of reference, 116
 at surface of a liquid, 416-417, 418(S)
 chemical, 132(C)

for conservative force, 120-122
 electrostatic, 120
 of flowing liquid, 414
 gravitational, 116, 120, 124-125(S), 159(N)
 intermolecular (in liquids), 410, 417
 in one dimension, 120
 property of system configuration, 116, 121, 124(S)
 spring, 120, 124-125(S)
 'stored energy', 158(N)
 undefined for non-conservative forces, 206
 of universe, 159(N)
Power, 118, 124(S)
 unit of, 118
Power series
 expansion of function, 122
Precession, 345(C)
 torque-free, 335(C)
Pressure, 378-381, 384(S)
 dependence on depth in a fluid, 411, 418(S)
 in liquids, 410
 in liquids, lack of dependence on direction or shape of container, 411, 418(S)
 radiation, 390-393(C)
Problem solving, 3-5(O)
 advantages of working with symbols, 4(O)
 checking special cases, 4(O)
 continuous transfer of material, 257(C)
 dimensional analysis, 4(O), 15
 general strategy for, 3(O)
GENERAL INDEX

neglect of small quantities, 134(C)
problems involving forces and accelerations, 105(C)
simplicity of conservation law approach, 144(C), 457(Problem Answers)
small angle approximations, 80(C), 227(C)
use of approximate calculations, 38(C)
use of vector algebra, 190–191(C)
Problem-solving strategy, 3(O)
Product rule, 399(C)
Projectile, 16, 125(S)
Pump
suction, 419(P)
Pythagorean theorem
and Euclidean geometry, 52(N)
Quadratic equation
choosing appropriate root of, 28(C), 37(C)
solution of, 28(C), 98(C)
Quantum mechanics, 11, 398(C)
and specific heat ratio, 398(C)
Quarks, 63
Radian, rad, 66
Radiation pressure, 390–393(C)
Radioactivity, 155(N)
beta decay, 155(N)
Reduced mass (of two-body system), 290(C)
Reference frame, 16, 19(S)
center of mass, 169
change of, 275
Earth’s surface, 207
inertial, 60–61, 67(S)
non-inertial, 62, 206–208
rotating, 207
Reines, Frederick, 155(N)
Relativity
general, 11, 51(N), 53(N), 62, 208
special, 11
Rigid body, 266–267
definition of, 266
kinetic energy of, 268–269, 276
motion of, 267, 273, 313–317, 319–320, 321–322(S)
Rocket
velocity of, 255–256(C)
Rolling without slipping, 275
Rotation, 266, 319
about fixed axis, 266–272
about moving axis of fixed orientation, 273–276
axis of, 266, 274
Scalar, 13, 19(S)
Scalar product, See Dot product
Scientific method, 10, 50–51(N), 441–442(O)
controlled experiment, 50(N)
experiment and theory, 51(N)
in the observational sciences, 51(N)
Second, s, 10
SI, See Système International
Significant figures
choosing appropriate number of, 27(C)

(O) – Overview (S) – Summary (P) – Problems (C) – Complete Solutions (N) – Supplementary Notes

528
Simple harmonic motion, 65, 68(S), 123
 about minimum of potential energy, 122–123
Small angle approximations, 80(C), 227(C)
Soap bubble
 surface tension of, 416, 422(P), 431(C)
Solids
 difference from liquids, 410
Space
 Euclidean, 10
 non-Euclidean, 11, 52(N)
 three-dimensional, 10, 52(N)
Specific heat
 at constant pressure, 389(P)
 at constant volume, 389(P)
 ratio of (γ), 396(C)
Specific heat capacity, 382, 384(S)
 ratio of, for real gases, 398(C)
Speed, 14
 air, 42(C)
 ground, 42(C)
 root-mean-square (rms), 390(C)
 terminal, 230(Problem Answers)
Speed of light, 10–11
Spin
 effect on motion of balls, 415
Spring
 balance, 77(C), 95(P)
 constant, 66
 force exerted by, 66
 potential energy, 120, 124–125(S)
Stability
 of ships, 448(C)
Statics, 321(S)
 underdetermined problems, 333–334(C)
Stored energy, See Potential energy
Streamlines, 413
Superstring theory, 90(N), 442(O)
Surface tension
 in a soap bubble, 416, 422(P), 431(C)
 molecular picture of, 416–417, 418(S)
Symmetry
 axis of, 274
Système International, 10
System
 closed, 117
System of particles, 164, 199(N)
 kinetic energy of, 168
 momentum of, 167
Temperature, 168, 379–382, 384(S)
 absolute zero of, 379, 384(S)
 Celsius scale, 379, 385(S)
 Centigrade scale, 379, 385(S)
 Fahrenheit scale, 379, 385(S)
 kinetic, 379, 384(S)
 measure of average kinetic energy of gas molecule, 380
 thermodynamic, 380
 thermodynamic scale of, 402(C)
 unit of, 379
GENERAL INDEX

Tennis ball
 effect of spin on, 415
Tension, 64, 68(S), 169
 in massless, inextensible rope, 65
Terminal speed, 230(Problem Answers)
Thermodynamics, 199(N), 383
 first law, 382, 384(S)
Time
 absolute, 10–11, 51(N)
 slowing of, for high speed observer, 11, 52(N)
 unit of, 10
Torque, 269–272
 about axis, 269–272
 about point, 316–317, 321–322(S)
 decomposition of, 320, 322(S)
 dependence on choice of axis, 270
 due to buoyant force, 412
 exerted by fictitious force, See Fictitious force, torque due to
 external, 272
 internal, 271, 317
 and Newton's third law, 272
 relation between vector and scalar, 317, 326(P), 341(C)
 unit of, 270
 vector, 316–317, 321–322(S)
 work done by, 269
Torsion pendulum, 282(P)
Toy models (highly idealized models), 89(N)
Translation, 266, 319

Triple point, 379
 of water, 379, 385(S)
Turbulence, 415
Underdetermined problems, 333–334(C)
Units
 checking of, 15
 conversion of, 15, 25–26(C)
Universe
 closed, 53(N), 159(N)
 curvature of, 53(N)
 energy of, 158–159(N)
 flat, 53(N), 159(N)
 geometry of, 53–55(N)
 gravitational potential energy of, 159(N)
 open, 53(N), 159(N)
 origin of, 159(N)
Vector, 19(S)
Vector product, See Cross product
Vectors, 12
 addition and subtraction of, 12–13, 19(S)
 components of, 12–13, 16, 19(S)
 cross product, See Cross product
 differentiating, 14, 19(S)
 dot product, See Dot product
 magnitude of, 13
 multiplication by scalar, 13–14, 19(S)
 negative of, 13
 notation for, 12
 in radial direction, 280(P)

(O) — Overview (S) — Summary (P) — Problems (C) — Complete Solutions (N) — Supplementary Notes

530
scalar product, See Dot product
in tangential direction, 280(P)
unit, 13, 280(P)
vector product, See Cross product
Velocity, 14
average, 17–18, 19(S)
derivative of position, 16, 19(S)
integral of acceleration, 17, 19(S)
relation between linear and angular, 267, 275
relative, 16
terminal, 230(Problem Answers)
Venturi meter, 421(P)

Virtual particles, 158(N)
Viscosity, 415, 441(O), 445(P)
Volume flow rate, 413, 418(S)
Watt, W, 118
Weight, 62–63, 67(S)
in non-inertial reference frame, 62–63
Wind tunnels, 412
Work, 117–119, 124–125(S), 168
done by internal force, 141(C), 168–169
done by/on ideal gas, 382–383, 384(S)
done by torque, 269
in unit time, See Power
Work-energy theorem, 117, 124–125(S), 269

(O) – Overview (S) – Summary (P) – Problems (C) – Complete Solutions (N) – Supplementary Notes
ESSENTIALS OF INTRODUCTORY CLASSICAL MECHANICS

PROBLEM INDEX

Acceleration
angular, 280 [8A.1], 282 [8C.5 (H)], 283 [8E.1 (S), 8E.2, 8E.4 (H)], 359 [10.7 (H)]

average, 21 [1A.7 (S)]

centricpetal, 23 [1D.1, 1D.2 (S)], 24 [1D.3], 95 [3.3], 96 [3.11], 212 [6E.6 (S)], 236 [7.1 (H), 7.3 (H)], 446 [13.14]

constant, 20 [1A.2], 21 [1A.5 (H), 1A.8 (H)], 23 [1C.1], 70 [2C.1], 359 [10.8]

derivative of velocity, 94 [3.1 (S)]

due to gravity, 22 [1A.9 (S)], 95 [3.7]

Airfoil, 422 [12C.6 (H)]

Air resistance, 211 [6D.1, 6D.2], 212 [6E.9], 213 [6E.10 (S)]

Air speed, 24 [1E.2 (S)]

Angle of bank
in circular motion, 96 [3.8 (S)], 212 [6E.6 (S)], 446 [13.14]

Angular acceleration, 282 [8C.5 (H)], 283 [8E.1 (S), 8E.2, 8E.4 (H)], 359 [10.7 (H)]

average, 280 [8A.1]

Angular momentum, 327 [9D.3 (H)]

about axis, 282 [8D.2 (H), 8D.3], 283 [8E.3 (S)], 326 [9D.2 (S)], 359 [10.8]

conservation of, 324 [9B.2 (S)], 325 [9B.3 (S), 9B.4 (H), 9B.5], 327 [9D.4 (S), 9D.5 (H), 9D.7], 358 [10.1 (S)], 359 [10.3 (H)]

principal axes, 324 [9B.1 (S)]

vector, 324 [9B.1 (S)], 325 [9B.5], 326 [9D.1 (S), 9D.2 (S)], 327 [9D.4 (S), 9D.5 (H), 9D.7], 328 [9D.9], 359 [10.4 (H)], 446 [13.14]

Angular velocity, 284 [8E.5 (S)], 358 [10.1 (S)], 359 [10.3 (H), 10.8], 360 [10.10], 443 [13.6], 446 [13.14]

vector, 326 [9D.1 (S)], 327 [9D.8 (S)], 328 [9D.9]

Archimedes’ principle, 420 [12B.1, 12B.2 (S), 12B.3 (S)], 421 [12B.4 (H)], 445 [13.13]

Atmosphere
composition of planetary, 388 [11C.6 (S)]
density variation, 388 [11C.6 (S)]
isothermal, 388 [11C.6 (S)]

Atom
size of, 445 [13.11 (S)]

Atwood’s machine, 239 [7.10 (S)]

Axis
principal, 324 [9B.1 (S)]
of symmetry, 324 [9B.1 (S)]

Balance
beam, 95 [3.6 (H)], 324 [9A.5 (S)]
spring, 69 [2B.2], 95 [3.6 (H)]

Beam balance, 95 [3.6 (H)], 324 [9A.5 (S)]

Bernoulli’s equation, 421 [12C.3 (H)], 422 [12C.4, 12C.5 (S), 12C.6 (H), 12C.7], 444 [13.10], 445 [13.12 (H), 446 [13.14]

Binary stars, 175 [5C.1], 281 [8C.1 (S)]

Block and tackle, 238 [7.7 (S)]

Brownian motion, 386 [11A.2 (H)]

Bubble, 422 [12D.2 (S), 12D.3 (H)]

Buoyancy, 420 [12B.1, 12B.2 (S), 12B.3 (S)], 421 [12B.4 (H)], 445 [13.13]

533
center of, 443 [13.3 (S)]
Carnot cycle, 389 [11D.7 (S)]
efficiency of, 389 [11D.7 (S)]
Cartesian diver, 443 [13.2 (H)]
Center of mass, 241 [7.16 (S)], 360 [10.12], 443 [13.3 (S)]
determination of, 175 [5C.1, 5C.2 (S), 5C.3 (S)], 176 [5C.4 (H)], 281 [8C.2], 323 [9A.1], 324 [9A.6 (H)]
motion of, 175 [5C.2 (S)], 241 [7.17], 242 [7.19 (H)]
no gravitational torque about, 284 [8E.7 (S)]
Clement
Hal, 444 [13.7 (H)]
Collision, 174 [5B.1, 5B.2, 5B.3 (H)], 175 [5B.4 (H), 5B.5 (S), 5B.6 (S), 5B.7 (H)], 176 [5C.6 (H)]
elastic, 174 [5B.1, 5B.2, 5B.3 (H)], 175 [5B.4 (H), 5B.5 (S), 5B.6 (S)], 176 [5C.6 (H)], 444 [13.9]
impact parameter, 175 [5B.6 (S)]
inelastic, 175 [5B.4 (H), 5B.5 (S), 5B.7 (H)], 212 [6E.7 (S)], 239 [7.13 (H)], 325 [9B.5], 358 [10.1 (S)], 443 [13.6]
Continuity
equation of, 421 [12C.1, 12C.2 (S)]
Coordinate system
choice of, 175 [5B.6 (S)]
Cosmology, 387 [11B.5 (S)]
galaxy formation, 387 [11B.5 (S)]
Cross product
component form, 326 [9C.1 (H), 9C.2 (S)]
Degrees of freedom, 389 [11D.6 (S)]
Density
of atmosphere, 388 [11C.6 (S)]
of liquid, 420 [12B.3 (S)], 444 [13.7 (H)]
number, 388 [11C.5 (H)], 443 [13.1 (H)]

Differentiation
finding maxima and minima using, 210 [6B.2 (S)]
of unit vector, 280 [8A.2 (S)]
Displacement, 21 [1A.6]
Distance
units of, 20 [1A.4 (S)]
Dot product, 127 [4C.2 (S), 4C.3 (H)], 175 [5B.6 (S)]

Energy
of bound state, 236 [7.2], 237 [7.5 (S)]
conservation of, 127 [4C.4 (S), 4D.1 (S)], 128 [4D.2, 4D.3 (S), 4D.4 (H)], 129 [4D.5 (S), 4D.6 (S), 4E.2 (S)], 174 [5B.2, 5B.3 (H)], 175 [5B.4 (H), 5B.5 (S), 5B.6 (S)], 176 [5C.6 (H)], 210 [6C.1 (S)], 236 [7.1 (H), 7.3 (H)], 237 [7.4 (S), 7.5 (S)], 239 [7.13 (H)], 240 [7.14, 284 [8E.5 (S), 8E.8 (S), 8E.9], 325 [9B.3 (S), 9B.4 (H)], 359 [10.3 (H)], 360 [10.10], 388 [11D.3 (H)], 443 [13.4 (S), 13.6], 444 [13.8 (H)]
internal, 210 [6C.1 (S)], 388 [11D.3 (H)], 389 [11D.5 (H)]
“lost” (apparently not conserved), 210 [6C.1 (S)]
mechanical, 210 [6C.1 (S)]
Equation of continuity, 421 [12C.1, 12C.2 (S)]
Equilibrium, 130 [4E.5 (H)], 239 [7.12 (H)]
and potential energy, 129 [4E.1, 4E.3 (S), 4E.4 (H)]
static, 323 [9A.1, 9A.2, 9A.3, 9A.4 (S)], 324 [9A.5 (S), 9A.6 (H), 9A.7 (H), 9A.8 (S), 9A.9 (H)]
unstable, 358 [10.2 (H)]
Equipartition
principle of, 389 [11D.6 (S)]

Flow
laminar, 421 [12C.2 (S)]
steady, 421 [12C.1, 12C.2 (S), 12C.3 (H)]
turbulent, 421 [12C.2 (S)]
volume, 445 [13.12 (H)]

Force
average, 176 [5D.2 (S), 5D.3 (H)]
central, 324 [9B.2 (S)]
constant, 69 [2A.3]
contact, 242 [7.19 (H)], 323 [9A.3, 9A.4 (S)]
as derivative of potential energy, 237 [7.5 (S)]
diagram, 70 [2C.2 (S), 2C.3 (H)], 71 [2C.4 (H), 2C.5 (S), 2D.2 (S)], 72 [2D.3 (H)], 96 [3.11], 236 [7.3 (H)], 360 [10.10], 446 [13.14]
drag, 211 [6D.1, 6D.2], 212 [6E.8 (H), 6E.9], 213 [6E.10 (S)], 446 [13.14]
electrostatic, 70 [2B.5 (S), 2B.6 (H)]
external, 173 [5A.6]
gravitational, 69 [2B.1], 70 [2B.6 (H)], 97 [3.13 (S), 3.14]
interatomic, 237 [7.5 (S)], 443 [13.1 (H)]
internal, 173 [5A.6]
muscular, 127 [4D.1 (S)]
net, 97 [3.15]
normal, 70 [2C.1], 71 [2C.5 (S)]
as rate of change of momentum, 173 [5A.4 (H)]
spring, 69 [2B.2, 2B.3 (H)], 71 [2D.1 (S)], 97 [3.15], 212 [6E.5 (H)], 213 [6F.1 (H)]
strong, 70 [2B.5 (S)]
tension, 70 [2C.2 (S), 2C.3 (H)], 71 [2C.4 (H), 2C.5 (S)]
work done by, 127 [4C.2 (S), 4C.3 (H), 4D.1 (S)], 130 [4F.5 (H)], 238 [7.7 (S)]
Free-body diagram (see also Force diagram), 237 [7.6 (H)]
Freely falling body, 96 [3.10 (S)]
Friction, 240 [7.15 (H)], 359 [10.8], 446 [13.15 (H)]
between two moving surfaces, 238 [7.8, 7.9]
coefficient of static, 210 [6A.2 (H)], 238 [7.9], 239 [7.11 (S)], 284 [8E.8 (S), 8E.9], 324 [9A.7 (H)]
kINETIC, 210 [6B.1, 6B.2 (S), 6B.3, 6C.1 (S)], 211 [6C.2 (H), 6E.1 (S), 6E.2 (H), 6E.3, 6E.4], 212 [6E.5 (H), 6E.7 (S)], 237 [7.6 (H)], 240 [7.15 (H)], 359 [10.6], 360 [10.9 (H)]
static, 210 [6A.1, 6A.2 (H), 6B.3], 211 [6E.1 (S), 6E.2 (H), 6E.3, 6E.4], 212 [6E.5 (H), 6E.6 (S)], 240 [7.15 (H)], 359 [10.2 (H)], 360 [10.11 (S)]
work done by, 210 [6C.1 (S)], 211 [6C.2 (H)], 238 [7.8], 446 [13.15 (H)]

Frisbee
aerodynamics of, 444 [13.10]

Gravity, 97 [3.14]
center of, 284 [8E.7 (S)]
gravitational constant, 95 [3.7]
Newton’s theory of, 324 [9B.2 (S)]

Ground speed, 24 [1E.2 (S)]

Gyroscope, 327 [9D.4 (S), 9D.5 (H), 9D.7]
nutation, 327 [9D.5 (H)]
latent, 445 [13.11 (S)]
molar heat capacity, 389 [11D.4 (S), 11D.5 (H), 11D.6 (S)]
Heat engine
PROBLEM INDEX

efficiency of, 389 [11D.7 (S)]

Hooke's law, 69 [2B.2, 2B.3 (H)], 71 [2D.1 (S)], 126 [4B.3]

Hydraulic jack, 419 [12A.4 (S)]

Hydrometer, 420 [12B.3 (S)]

Iceberg
 fraction submerged, 420 [12B.2 (S)]

 adiabatic expansion and compression of, 389 [11D.7 (S)]
 assumptions, 443 [13.1 (H)]
 diatomic, 389 [11D.6 (S)]
 isobaric expansion or compression, 388 [11D.2 (H)]
 isothermal expansion or compression, 388 [11D.2 (H)]
 monatomic, 388 [11D.2 (H)]
 polyatomic, 389 [11D.6 (S)]
 pressure of, 386 [11A.3, 11A.4], 387 [11B.4, 11C.1, 11C.3 (H)]
 work done by/on, 388 [11D.1 (H), 11D.2 (H), 11D.3 (H)], 389 [11D.7 (S)], 444 [13.8 (H)]

Impact parameter, 175 [5B.6 (S)]

Impulse, 176 [5D.1, 5D.2 (S), 5D.3 (H)], 285 [8E.10], 359 [10.5]

Inclined plane, 70 [2C.1], 96 [3.10 (S)], 127 [4C.1], 174 [5A.7 (S), 5A.8], 211 [6C.2 (H), 6E.1 (S), 6E.2 (H), 6E.4], 239 [7.11 (S)], 284 [8E.6 (H)], 360 [10.9 (H)]

Indeterminate problem, 324 [9A.8 (S)]

Integration
 as limit of summation, 241 [7.16 (S)]

Kepler
 Johannes, 324 [9B.2 (S)]

Kepler's laws, 324 [9B.2 (S)]

Kinetic energy, 126 [4A.1, 4A.2], 127 [4C.4 (S)], 128 [4D.3 (S)], 236 [7.2]
 rotational, 282 [8D.1, 8D.2 (H), 8D.3], 283 [8E.3 (S)], 284 [8E.5 (S), 8E.9], 359 [10.3 (H)]
 of system of particles, 176 [5C.5 (S)]

Liquid
 drop, 422 [12D.2 (S)]

Mass, 70 [2B.7]
 definition of, 69 [2A.4 (H)], 71 [2D.1 (S)]

Maxwell-Boltzmann distribution, 388 [11C.6 (S)]

Molar heat capacity, 389 [11D.4 (S), 11D.5 (H), 11D.6 (S)]
 at constant pressure, 389 [11D.4 (S)]
 at constant volume, 389 [11D.4 (S)]
 ratio of (γ), 389 [11D.4 (S), 11D.6 (S)]

Moment of inertia, 281 [8C.2], 283 [8E.1 (S)], 327 [9D.3 (H)], 359 [10.5, 10.7 (H)], 360 [10.12]
 calculation of, 281 [8C.1 (S)], 282 [8C.4 (S), 8C.5 (H), 8D.2 (H)], 283 [8E.3 (S)], 285 [8E.10]

Momentum, 173 [5A.2, 5A.4 (H)]
 conservation of, 174 [5B.1, 5B.2, 5B.3 (H)], 175 [5B.4 (H), 5B.5 (S), 5B.6 (S), 5B.7 (H)], 176 [5C.6 (H), 5D.1, 5D.2 (S), 5D.3 (H)], 239 [7.13 (H)], 240 [7.14], 241 [7.16 (S), 7.17], 358 [10.2 (H)], 443 [13.6]
 of photon, 387 [11B.5 (S)]

momentum
 conservation of, 444 [13.8 (H)]

Motion

536
circular, 23 [1D.1, 1D.2 (S)], 24 [1D.3], 95
[3.3], 96 [3.8 (S), 3.9 (H), 3.11], 212 [6E.6
(S)], 446 [13.14]
of gas molecule, 386 [11A.2 (H)]
in one dimension, 21 [1A.6, 1A.7 (S), 1A.8
(H)], 94 [3.1 (S)]
orbital, 24 [1D.3], 95 [3.7], 97 [3.13 (S)], 324
[9B.2 (S)], 325 [9B.3 (S), 9B.4 (H)]
of rigid body, 327 [9D.3 (H)], 359 [10.5, 10.6]
in three dimensions, 94 [3.1 (S)]
Newton's cradle, 70 [2C.2 (S)], 174 [5B.2]
Newton's laws
second, 69 [2A.1, 2A.2, 2A.3], 173 [5A.5 (S)]
third, 173 [5A.1, 5A.3 (S), 5A.5 (S)], 174 [5A.7
(S), 5A.8], 236 [7.1 (H)], 237 [7.6 (H)], 241
[7.16 (S)]
Oscillation, 240 [7.14]
about equilibrium, 71 [2D.1 (S)], 72 [2D.3
(H)], 239 [7.12 (H)], 443 [13.4 (S)]
about minimum of potential energy, 129
[4E.2 (S), 4E.3 (S), 4E.4 (H)]
amplitude of, 282 [8D.3]
period of, 129 [4E.3 (S), 4E.4 (H)], 282 [8D.3]
Parallel-axis theorem
proof of, 281 [8C.3 (S)]
use of, 282 [8C.4 (S), 8C.5 (H)]
Pascal's law, 443 [13.2 (H), 13.4 (S), 13.5]
Pendulum, 71 [2D.2 (S)], 96 [3.9 (H), 3.10 (S)],
128 [4D.4 (H)], 214 [6F.2 (H)], 283 [8E.4
(H)]
b ballistic, 239 [7.13 (H)], 358 [10.1 (S)], 443
[13.6]
conical, 96 [3.9 (H)], 326 [9D.2 (S)]
torsion, 282 [8D.3]
Perpendicular-axis theorem
proof of, 281 [8C.3 (S)]
use of, 282 [8C.4 (S), 8C.5 (H)]
Photons, 387 [11B.5 (S)]
Potential energy, 127 [4B.6], 129 [4E.4 (H)]
for conservative force, 126 [4B.3, 4B.5 (H)],
236 [7.2]
electrostatic, 126 [4B.5 (H)]
gravitational, 126 [4B.1, 4B.2 (S), 4B.4 (S),
4B.5 (H)], 127 [4C.4 (S)], 128 [4D.2, 4D.3
(S)], 130 [4E.5 (H)], 236 [7.2, 7.3 (H)]
near minimum, 129 [4E.2 (S)]
Spring, 126 [4B.3], 129 [4D.5 (S), 4D.6 (S)],
130 [4E.5 (H)], 240 [7.14]
Power, 127 [4C.2 (S)]
Precession, 327 [9D.5 (H)]
torque-free, 324 [9B.1 (S)], 328 [9D.9]
Pressure, 444 [13.9]
atmospheric, 387 [11C.2], 419 [12A.3 (H)]
in bubble, 422 [12D.2 (S), 12D.3 (H)]
cooker, 388 [11C.4]
fluid, 419 [12A.1, 12A.2 (S), 12A.3 (H), 12A.4
(S)], 420 [12A.5 (S), 12A.6 (H)], 421 [12C.3
(H)], 422 [12C.4, 12C.5 (S), 12C.6 (H),
12C.7], 443 [13.2 (H), 13.4 (S), 13.5], 444
[13.7 (H)]
of ideal gas, 386 [11A.3, 11A.4], 387 [11B.4,
11C.1, 11C.3 (H)], 388 [11C.4]
in liquid drop, 422 [12D.2 (S)]
radiation, 387 [11B.5 (S)]
variation with height, 419 [12A.1, 12A.2 (S),
12A.3 (H), 12A.4 (S)], 420 [12A.5 (S), 12A.6
(H)]
Principle
Archimedes', 420 [12B.1, 12B.2 (S), 12B.3
(S)], 421 [12B.4 (H)], 445 [13.13]
PROBLEM INDEX

Problem solving

neglect of small quantities, 126 [4B.4 (S)]

Projectile, 22 [1A.9 (S)], 23 [1C.2 (S), 1C.3 (H), 1C.4 (S)], 94 [3.2], 95 [3.4 (S), 3.5 (H)], 96 [3.11], 126 [4A.2], 128 [4D.3 (S)], 212 [6E.9], 213 [6E.10 (S)], 241 [7.18 (H)], 443 [13.5], 444 [13.8 (H)]

Pulley

frictionless, 174 [5A.7 (S), 5A.8], 238 [7.7 (S)], 239 [7.10 (S), 7.11 (S), 7.12 (H)]

rotating, 284 [8E.6 (H)], 360 [10.9 (H)]

Pump, 419 [12A.3 (H)]

PV plot, 388 [11D.3 (H)]

cycle on, 389 [11D.7 (S)]

Quantum mechanics

and specific heat ratio, 389 [11D.6 (S)]

Reference frame

center of mass, 176 [5C.6 (H)]

change of, 24 [1E.1 (S), 1E.2 (S), 1E.3 (H)], 95 [3.4 (S), 3.5 (H)], 96 [3.12 (H)], 97 [3.14], 175 [5B.7 (H)], 241 [7.17]

non-inertial, 213 [6F.1 (H)], 214 [6F.2 (H)], 241 [7.18 (H)]

Reference point

choice of, in statics, 323 [9A.4 (S)]

Rigid body

motion of, 327 [9D.3 (H)], 359 [10.5, 10.6]

rotation of, 280 [8A.2 (S)], 283 [8E.1 (S), 8E.2, 8E.3 (S), 8E.4 (H)]

Rocket, 325 [9B.4 (H)]

operation of, 241 [7.16 (S), 7.17]

Rolling without slipping

condition for, 284 [8E.6 (H), 8E.8 (S), 8E.9], 285 [8E.10], 327 [9D.6 (H)], 359 [10.6, 10.8], 360 [10.10, 10.11 (S)], 446 [13.15 (H)]

Rotation

about fixed axis, 280 [8A.2 (S)], 283 [8E.1 (S), 8E.2, 8E.3 (S), 8E.4 (H)]

about moving axis of fixed orientation, 284 [8E.8 (S), 8E.9], 327 [9D.6 (H)]

Satellite

geosynchronous, 24 [1D.3]

Ships

stability of, 443 [13.3 (S)]

Simple harmonic motion, 71 [2D.1 (S), 2D.2 (S)], 72 [2D.3 (H)], 129 [4E.2 (S), 4E.3 (S), 4E.4 (H)], 130 [4E.5 (H)], 214 [6F.2 (H)], 283 [8E.4 (H)], 443 [13.4 (S)]

Small angle approximation, 96 [3.9 (H)]

Small angle approximations, 71 [2D.2 (S)]

Specific heat capacity

ratio of (γ), 389 [11D.4 (S), 11D.6 (S)]

Speed, 20 [1A.1, 1A.3, 1A.4 (S)]

of gas molecule, 386 [11A.1, 11B.1, 11B.2 (S), 11B.3 (H)], 387 [11B.4], 388 [11C.6 (S)]

Spring

balance, 69 [2B.2], 95 [3.6 (H)]

constant, 69 [2B.3 (H)], 71 [2D.1 (S)]

force exerted by, 212 [6E.5 (H)], 213 [6F.1 (H)]

potential energy, 126 [4B.3], 129 [4D.5 (S), 4D.6 (S)], 130 [4E.5 (H)], 240 [7.14]

Statics, 323 [9A.1, 9A.2, 9A.3, 9A.4 (S)], 324 [9A.5 (S), 9A.6 (H), 9A.7 (H), 9A.8 (S), 9A.9 (H)]

Surface tension, 422 [12D.1 (H), 12D.2 (S), 12D.4], 445 [13.11 (S)]

Symmetry

axis of, 324 [9B.1 (S)]

use of, 324 [9A.8 (S), 9B.1 (S)]
Temperature

Fahrenheit scale, 387 [11C.1]
kineic, 386 [11A.4]

Tension, 70 [2C.2 (S), 2C.3 (H)], 71 [2C.4 (H), 2C.5 (S)], 127 [4C.2 (S)], 174 [5A.7 (S), 5A.8], 237 [7.6 (H)], 239 [7.10 (S), 7.11 (S)], 240 [7.15 (H)], 242 [7.19 (H)], 284 [8E.5 (S), 8E.6 (H)], 360 [10.9 (H)], 446 [13.14]
in massive rope, 173 [5A.5 (S)]
surface, 422 [12D.1 (H), 12D.2 (S), 12D.4, 445 [13.11 (S)]

Torque, 327 [9D.3 (H)], 443 [13.3 (S)], 446 [13.15 (H)]

about axis, 281 [8B.1, 8B.2 (H)], 283 [8E.1 (S), 8E.2, 8E.4 (H)], 284 [8E.7 (S)], 285 [8E.10], 326 [9C.3, 9D.2 (S)], 327 [9D.6 (H)], 359 [10.6], 360 [10.11 (S)]

about point, 323 [9A.4 (S)]

about point (see also Torque, vector), 326 [9C.3], 327 [9D.4 (S), 9D.5 (H)], 358 [10.2 (H)], 446 [13.14]

average, 359 [10.7 (H)]

rate of change of angular momentum, 326 [9C.2 (S)]

relation between vector and scalar, 326 [9C.1 (H)]

vector, 326 [9C.1 (H), 9D.1 (S), 9D.2 (S)], 327 [9D.7], 359 [10.4 (H)]

Underdetermined problem, 324 [9A.8 (S)]

Unit vector

radial, 280 [8A.2 (S)]
tangential, 280 [8A.2 (S)]

Vectors

components of, 22 [1B.1, 1B.2 (H)], 23 [1C.1], 94 [3.1 (S)]
differentiating, 280 [8A.2 (S)]
magnitude of, 22 [1B.1, 1B.2 (H)]
unit, 280 [8A.2 (S)]

Velocity, 21 [1A.6]

average, 20 [1A.3], 21 [1A.7 (S)]
derivative of position, 94 [3.1 (S)]
terminal, 211 [6D.1, 6D.2], 212 [6E.8 (H)]
wind, 386 [11A.1]

Venturi meter, 421 [12C.3 (H)]

Weight, 69 [2B.1], 70 [2B.4 (H)], 2B.7, 95 [3.6 (H)]

Work, 126 [4B.2 (S)], 127 [4C.1, 4C.2 (S), 4C.3 (H), 4C.4 (S), 4D.1 (S)], 128 [4D.2, 130 [4E.5 (H)], 211 [6C.2 (H)], 237 [7.4 (S)], 238 [7.7 (S)], 285 [8E.10], 419 [12A.4 (S)], 446 [13.15 (H)]
done by friction, 210 [6C.1 (S)]
done by internal force, 127 [4D.1 (S)]
done by/on ideal gas, 388 [11D.1 (H), 11D.3 (H)], 389 [11D.7 (S)]

Work-energy theorem, 126 [4B.2 (S)], 127 [4C.4 (S)], 128 [4D.2], 212 [6E.7 (S)]

Yo-yo, 360 [10.10, 10.11 (S)]