An object of mass \(m \) is released from an initial state of rest from a spring of constant \(k \) that has been compressed a distance \(x_0 \). After leaving the spring (at the position \(x = 0 \) when the spring is unstretched) the object travels a distance \(d \) along a horizontal track that has a coefficient of friction that varies with position as

\[
\mu = \mu_0 + \mu_1 \left(\frac{x}{d} \right).
\]

Following the horizontal track, the object enters a quarter turn of a frictionless loop whose radius is \(R \). Finally, after exiting the quarter turn of the loop the object travels vertically upward to a maximum height, \(h \), (as measured from the horizontal surface). Let \(g \) be the gravitational constant. Find the maximum height, \(h \), that the object attains. Express all answers in terms of \(m, k, x_0, g, \mu_0, \mu_1, d \) and \(R \); not all variables may be needed.