A satellite of mass m_s is in an elliptical orbit around a planet of mass m_p, which is located at one focus of the ellipse. The satellite has a speed v_a at the distance r_a (apoapsis) when it is furthest from the planet. The distance of closest approach is r_p (periapsis). Let G be the universal constant of gravity. The goal of this problem is to find the ratio r_a / r_p in terms of G, m_p, v_a, and r_a.

a) Apply conservation of energy to the two states periapsis and apoapsis to determine a relationship between r_p and v_p.

b) The gravitational torque on the satellite about the center of the planet is zero throughout the elliptic orbit of the satellite. At periapsis and apoapsis, the velocity of the satellite is perpendicular to the vector from the center of the planet to the satellite. Use the fact that the angular momentum is constant about the center of the planet to determine an expression for v_p in terms of r_p, v_a and r_a.

c) Use your results from parts a) and b) to determine an expression for r_p in terms of G, m_p, v_a and r_a.

d) See if you can determine the ratio r_a / r_p in terms of G, m_p, v_a, and r_a. Hint: this will require some algebra manipulations of your result from part c).