A rigid rod of length \(d \) and mass \(m \) is lying on a horizontal frictionless table and pivoted at the point \(P \) on the one end (shown in the figure). A point-like object of the same mass \(m \) is moving to the right (see figure) with speed \(v_0 \). It collides elastically with the rod at the midpoint of the rod and rebounds backwards with speed \(v_f \). The moment of inertia of a rod about the center of mass is \(I = \frac{1}{12} md^2 \). After the collision, the rod rotates clockwise about its pivot point \(P \) with angular speed \(\omega_f \). Find the angular speed \(\omega_f \). Express your answer in terms of \(d \), \(m \), \(v_0 \), and \(v_f \) as needed.