A spherical non-rotating planet (with no atmosphere) has mass m_1 and radius r_1. A projectile of mass $m_2 << m_1$ is fired from the surface of the planet at a point A with a speed v_A at an angle $\alpha = 30^\circ$ with respect to the radial direction. In its subsequent trajectory the projectile reaches a maximum altitude at point B on the sketch. The distance from the center of the planet to the point B is $r_2 = (5/2)r_1$.

a) Is there a point about which the angular momentum of the projectile is constant? If so, use this point to determine a relation between the speed v_B of the projectile at the point B in terms of v_A and the angle α.

b) Determine the initial speed, v_A, in terms of G, m_1, and r_1.