A pendulum consists of a rod and two knife-edges separated from the center of mass \(l_1 \) and \(l_2 \) respectively (figure below left). The moment of inertia of the rod about the center of mass is \(I_0 = mk_g^2 \) where \(k_g \) is a constant called the radius of gyration. When the pendulum is pivoted about the upper knife-edge (figure below center), the period for small oscillations is \(T_1 \). When the pendulum is turned upside down and pivoted about the other edge (figure below right), and the period for small oscillations is \(T_2 \). The distances \(l_1 \) and \(l_2 \) are adjusted until \(T_1 = T_2 \). Express your answers to the following questions in terms of \(l_1, l_2 \), and \(T \) as needed.

a) What is the radius of gyration \(k_g \)?

b) Using your results from part (a), show that the gravitational acceleration \(g \) can be determined by measuring the length between the knife-edges \(l_1 + l_2 \) and the period \(T \).