A gyroscope consists of an axle of negligible mass and a disk of mass M and radius R mounted on a platform that rotates with angular speed Ω as shown in the figure below. The gyroscope is spinning with angular speed ω. Forces F_a and F_b act on the gyroscopic mounts. The goal of this problem is to find the magnitudes of the forces F_a and F_b. You may assume that the moment of inertia of the gyroscope about an axis passing through the center of mass normal to the plane of the disk is given by I_n.

a) Calculate the torque about the center of mass of the gyroscope.

b) Calculate the angular momentum about the center of mass of the gyroscope.

c) Use Newton’s Second Law find a relationship between F_a and F_b, the mass M of the gyroscope, and the gravitational constant g.

d) Use the torque equation and Newton’s Second Law to find expressions for F_a and F_b.