IC-W06D2-1 Work Done by the Spring Force Solution

Connect one end of a spring of length l_{eq} with spring constant k to an object resting on a smooth table and fix the other end of the spring to a wall. Stretch the spring until it has length l_0 and release the object. How much work does the spring do on the object as a function of $x \equiv l - l_{eq}$, the distance the spring has been stretched or compressed?

Solution: We first begin by choosing a coordinate system with origin at the position of the body when the spring is at rest in the equilibrium position. We choose the \hat{i} unit vector to point in the direction the body moves when the spring is being stretched. We choose the coordinate function $x(t)$ to denote the position of the body with respect to the origin (equilibrium position) at time t. In Figure 2 we illustrate the coordinate system by showing the equilibrium position and the position of the body at time t when the spring is stretched, $x(t)$. Note that at $t = t_0$, the position of the body is $x_0 \equiv x(t = t_0) = l_0 - l_{eq}$, and at time t the position of the body is denoted by $x(t) = l(t) - l_{eq}$. Note that x_0 and $x(t)$ can be positive, zero, or negative.

![Figure 2 Equilibrium position and position at time t](image)

The spring force on the body is given by

$$\vec{F} = F_x \hat{i} = -k x \hat{i}. $$
In Figure 3 we show the graph of the x-component of the spring force as a function of x for positive values of x corresponding to stretching of the spring.

![Graph of the x-component of the spring force as a function of x.]

Figure 3 The x-component of the spring force as a function of x.

The work done is just the area under the curve for the interval x_0 to $x(t)$,

$$W = \int_{x=x_0}^{x=x(t)} F_x \, dx = \int_{x=x_0}^{x=x(t)} -k x \, dx .$$

This integral is straightforward and the work done by the spring force on the body is

$$W = \int_{x=x_0}^{x=x(t)} -k x \, dx = \frac{1}{2} k \left(x(t)^2 - x_0^2 \right) .$$

When the absolute value of $x(t)$ is less than the absolute value of the initial distance, $|x(t)| < |x_0|$, the work done is positive. This means that if the spring is less stretched or compressed at time t than in the initial state, the work done by the spring force is positive. The spring force does positive work on the body when the spring goes from a state of “greater tension” to a state of “lesser tension.”