Block A of mass m_A is moving horizontally with speed V_A along a frictionless surface. It collides elastically with block B of mass m_B that is initially at rest. After the collision block B enters a rough surface at $x = 0$ with a coefficient of kinetic friction that increases linearly with distance $\mu_k(x) = bx$ for $0 \leq x \leq d$, where b is a positive constant. At $x = d$ block B collides with an unstretched spring with spring constant k on a frictionless surface. The downward gravitational acceleration has magnitude g.

What is the distance the spring is compressed when block B first comes to rest? Express your answer in terms of V_A, m_A, m_B, b, d, g, and k.
\[F_{\text{ext}} = 0 \implies P_{\text{x},i} = P_{\text{x},f} \]

\[m_A v_A = m_A v_{Axf} + m_B v_{Bxf} \]

\[v_A = v_{Axf} + \frac{m_B}{m_A} v_{Bxf} \quad (1) \]

relative velocity:

\[v_A = -(v_{Axf} - v_{Bxf}) \]

\[v_A = v_{Bxf} - v_{Axf} \quad (2) \]

add (1) and (2):

\[2v_A = \left(1 + \frac{m_B}{m_A}\right) v_{Bxf} \]

\[v_{Bxf} = \frac{2v_A}{1 + \frac{m_B}{m_A}} = \frac{2m_A v_A}{m_A + m_B} \quad (3) \]
\[W_{nC} = E_f - E_i \]
\[= \int_{0}^{d} bxmg \, dx = \frac{1}{2} kx_f^2 - \frac{1}{2} m_B v_{Bx1}^2 - \frac{1}{2} m_B g \frac{d^2}{2} \]

\[= \frac{1}{2} k x_f^2 - \frac{1}{2} m_B v_{Bx1}^2 \]

\[\Rightarrow x_f = \frac{m_B}{k} \left(v_{Bx1}^2 - \frac{1}{2} g d^2 \right) \quad \text{Use eq. (3)} \]

\[x_f = \sqrt{\frac{m_B}{k} \left(\frac{2 m_A v_A^2}{m_A + m_B} - \frac{1}{2} g d^2 \right)} \]