In a mill, grain is ground by a massive wheel that rolls without slipping in a circle on a flat horizontal mill stone driven by a vertical shaft. The rolling wheel has mass M, radius b and is constrained to roll in a horizontal circle of radius R at angular speed Ω. The wheel pushes down on the lower mill stone with a force equal to twice its weight (normal force). The mass of the axle of the wheel can be neglected. Express your answers to the following questions in terms of R, b, M, Ω, and g as needed. The goal of this problem is to find Ω.

a) What is the relation between the angular speed ω of the wheel about its axle and the angular speed Ω about the vertical axis?

b) Find the time derivative of the angular momentum about the joint (about the point P in the figure above) dL_P/dt.

c) What is the torque about the joint (about the point P in the figure above)?

d) What is the value of Ω?

Solution: The figure below shows the pivot point along with some convenient coordinate axes.
\[v_{cm} = b\omega. \quad (1) \]

Also the speed of the center of mass is related to the angular speed about the vertical axis associated with the circular motion of the center of mass by

\[v_{cm} = R\Omega. \quad (2) \]

Therefore equating Eqs. (1) and (2) we have that

\[\omega = \frac{\Omega R}{b}. \quad (3) \]

b) Assuming a uniform millwheel, \(I_{cm} = (1/2)Mb^2 \), the magnitude of the horizontal component of the angular momentum about the center of mass is

\[L_{cm,h} = I_{cm}\omega = \frac{1}{2}Mb^2\omega = \frac{1}{2}\Omega MMRb. \quad (4) \]

The horizontal component of \(\vec{L}_{cm} \) is directed inward, and in vector form \(\vec{L}_{cm} = L_{cm,h}(-\hat{r}) \) in the above coordinate system.

c) The axle exerts both a force and torque on the wheel, and this force and torque would be quite complicated. That’s why we consider the forces and torques on the axle/wheel combination. The normal force of the wheel on the ground is equal in magnitude to \(N_{WG} = 2mg \) so the third-law counterpart, the normal force of the ground on the wheel has the same magnitude \(N_{GW} = 2mg \).

The joint (or hinge) at point \(P \) therefore must exert a force \(\vec{F}_{HA} \) on the end of the axle that has two components forces an inward force \(\vec{F}_2 \) to maintain the circular motion and a downward force \(\vec{F}_1 \) to reflect that the upward normal force is larger in magnitude than the weight.

\[\]

\[N_{GW} = 2mg \]

d) About point \(P \), \(\vec{F}_{HA} \) exerts no torque. The normal force exerts a torque of magnitude \(N_{GW}R = 2mgR \), directed out of the page, or, in vector form, \(\vec{\tau}_{p,N} = -2mg\hat{r} \). The weight exerts a toque of magnitude \(MgR \), directed into the page, or, in vector form, \(\vec{\tau}_{p,mg} = Mg\hat{r} \). So the torque about \(P \) is
\[
\tau_p = \tau_{p,N} + \tau_{p,mg} = -2mgR\dot{\theta} + MgR\ddot{\theta} = -MgR\ddot{\theta}.
\] (5)

As the wheel rolls, the horizontal component of the angular momentum about the center of mass will rotate, and the inward-directed vector will change in the negative \(\hat{\theta} \)-direction. Mathematically,

\[
\frac{d\tilde{L}_{cm,h}}{dt} = \left| \tilde{L}_{cm,h} \right| \Omega(-\dot{\theta}) = \frac{1}{2} \Omega MRb\dot{\Omega}(-\dot{\theta}),
\] (6)

where we used Eq. (4) for the magnitude of the horizontal component of the angular momentum about the center of mass. This is consistent with the torque about \(P \) pointing out of the page in the above figure. We can now apply the torque condition that

\[
\tau_p = \frac{d\tilde{L}_p}{dt}
\] (7)

that becomes using Eqs. (5) and (6)

\[
MgR(-\dot{\theta}) = \frac{1}{2} \Omega^2 MRb(-\dot{\theta})
\] (8)

We can now solve Eq. (8) for the angular speed about the vertical axis

\[
\Omega = \sqrt{\frac{2g}{b}}.
\] (9)