

Non-Uniform Acceleration

Table Problem: Time Dependent Acceleration

Consider an object released at time t = 0 with an initial *x*-component of velocity v_{x_0} , located at position x_0 , and accelerating according to

$$a_x(t) = b_0 - b_1 t$$

Find the velocity and position as a function of time.

Concept Question

Consider an object released at time t = 0 with an initial *x*-component of velocity $v_{x,0} = 0$, and accelerating according to

$$a_x \equiv \frac{dv_x}{dt} = c_0 - c_1 v_x$$

After a very long time, the *x*-component of the velocity is

- 1. Zero
- 2. $c_0 c_1$
- 3. c_0/c_1
- 4. $c_0 + c_1$
- 5. Not sure

Let \vec{A} and \vec{B} be two vectors. Define a new vector $\vec{C} = \vec{A} + \vec{B}$, the "vector addition" of \vec{A} and \vec{B} by the geometric construction shown in either figure

Summary: Vector Properties		
Addition of Vectors		
1.	Commutativity $\vec{A} + \vec{B} = \vec{B} + \vec{A}$	
2.	Associativity $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$	
3.	Identity Element for Vector Addition $\vec{0}~$ such that $~~\vec{A}+\vec{0}=\vec{0}+\vec{A}=\vec{A}$	
4.	Inverse Element for Vector Addition $-\vec{\mathbf{A}}$ such that $\vec{\mathbf{A}}+\left(-\vec{\mathbf{A}} ight)=\vec{0}$	
Scala	ar Multiplication of Vectors	
1.	Associative Law for Scalar Multiplication $b(c\vec{A}) = (bc)\vec{A} = (cb\vec{A}) = c(b\vec{A})$	
2.	Distributive Law for Vector Addition $c(\vec{A} + \vec{B}) = c\vec{A} + c\vec{B}$	
3.	Distributive Law for Scalar Addition $(b+c) \vec{\mathbf{A}} = b \vec{\mathbf{A}} + c \vec{\mathbf{A}}$	
4.	Identity Element for Scalar Multiplication: number 1 such that $1\vec{A}\!=\!\vec{A}$	

Application of Vectors

(1) Vectors can exist at any point P in space.

(2) Vectors have direction and magnitude.

(3) Vector Equality: Any two vectors that have the same direction and magnitude are equal no matter where in space they are located.

Unit Vectors and Components

Vector Decomposition

Choose a coordinate system with an origin and axes. We can decompose a vector into component vectors along each coordinate axis, for example along the x,y, and z-axes of a Cartesian coordinate system. A vector at *P* can be decomposed into the vector sum,

Table Problem: Displacement Vector

At 2 am one morning a person runs 250 m along the infinite corridor at MIT from Mass Ave to the end of Building 8, turns right at the end of the corridor and runs 178 m to the end of Building 2, and then turns right and runs 30 m down the hall.

What is the direction and magnitude of the straight line between start and finish?

Vector Description of Motion

- Position $\vec{\mathbf{r}}(t) = x(t)\hat{\mathbf{i}} + y(t)\hat{\mathbf{j}}$
- **Displacement** $\Delta \vec{\mathbf{r}}(t) = \Delta x(t) \hat{\mathbf{i}} + \Delta y(t) \hat{\mathbf{j}}$

• Velocity
$$\vec{\mathbf{v}}(t) = \frac{dx(t)}{dt}\hat{\mathbf{i}} + \frac{dy(t)}{dt}\hat{\mathbf{j}} \equiv v_x(t)\hat{\mathbf{i}} + v_y(t)\hat{\mathbf{j}}$$

• Acceleration
$$\vec{\mathbf{a}}(t) = \frac{dv_x(t)}{dt}\hat{\mathbf{i}} + \frac{dv_y(t)}{dt}\hat{\mathbf{j}} \equiv a_x(t)\hat{\mathbf{i}} + a_y(t)\hat{\mathbf{j}}$$

Constant Acceleration

• Components of Velocity:

$$v_x = v_{0,x} + a_x t$$
, $v_y = v_{0,y} + a_y t$

• Components of Position:

$$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2, \qquad y = y_0 + v_{y0}t + \frac{1}{2}a_yt^2$$

• Eliminating *t*:

$$2a_{x}(x-x_{0}) = v_{x}^{2} - v_{x}^{2}$$

4. There is not enough information is specified in order to determine which object hits the ground first.

Table Problem: Stuffed Animal and the Gun

A stuffed animal is suspended at a height *h* above the ground. A physics demo instructor has set up a projectile gun a horizontal distance *d* away from the stuffed animal. The projectile is initially a height *s* above the ground. The demo instructor fires the projectile with an initial velocity of magnitude v_o just as the stuffed animal is released. Find the angle the projectile gun must be aimed in order for the projectile to strike the stuffed animal. Ignore air resistance.

Demo:

Stuffed Animal and Gun