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Chapter 24 Physical Pendulum
E. | had along with meE.the Descriptions, with some Drawings of the
principal Parts of the Pendulur@lock which | had made, and as also of
them of my then intended Timekeeper for the Longitude dt Sea

John Harrison

241 Introduction

We have already used NewtonOs Second Law or Conservation of Energy to analyze
systems likethe springobject system that oscillate. We shall now use torque and the
rotational equation of motion to study osciltajisystems like pendulums atatsional
springs.

24.1.1Simple Pendulum Torque Approach

Recall the simple pendulum from Chapter 2BThe coordinate system and force
diagram for the simp pendulum is shown in Figure 24.1
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Figure 24.1(a) Coordina¢ system and (b) torque diagréon simple pendulum

The torque about the pivot poift is gven by

R R o s
=0, mg=10" mg(cos# 0% Sn##) = $| mgsin# K (24.1.1)

The z-component of the torque about poiat

(r,), =—mglsing. (24.1.2)

1. HarrisonA Description Concerning Such Mechanisms as will Afford a Nice, or True Mensuration of
Time;E(London, 1775), p.19.
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When! >0, (/,),<0 and the torque abou® is directedin the negativel® -direction
(into the plane of Figure 24.1byhen ! <0, (/.),>0 and the torque abouP is

directedin the positivel-direction (out of the plane of Figure 24.18he moment of
inertia of a point mass about the pivot poftis | = ml?. Therotational equation of
motionis then

. d’s
(!P)z: lP z# IPF
ds (24.1.3)
(V(ﬂ"glsn$= MZF
Thus we have
2
‘ZT-Z: : lﬂgn_/ , (24.1.4)

agreeing with Eq. 23. 3.1%hen the angle of oscillation is small, wey use the small
angle approximation
sin/ "I, (24.1.5)

and Eq(24.1.4) reduces to the simple harmonic oscillator equation

2
ZT'Z " #lg! . (24.1.6)

We have already studied the solutions to this equation in ChapterA2Br8cedure for
determining the periogvhen the small angle approxim@at does not holds given in
Appendix24A.

242 Physical Pendulum

A physical pendulunconsists of a rigid body that undergoe®d axis rotation about a
fixed point S (Figure24.2.
ICI‘I’I

0
kO f<
Figure 24.2Physical pendulum
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The gravitational force acts at the center of mass of the physical pendddmatethe
distance of theenter of mas$o the pivot pointS by | . The torque analysis is nearly

identical to the simple penduluffhe torque about the pivot poifst is given by

lg=rg " mg = | 0" mg(cos#0$ sn##) = $|_mgsin# K. (24.2.1)

'S

Following the same steps that led from Equat{@d.1.1) to Equation(24.1.4), the
rotational equation for the physical pendulum is

2n

I'mgl_ sin" = lSF’ (24.2.2)
where | the moment ofnertia about the pivot poink. As with the simple pendulum,

for small anglessin/ " ! , Equation(24.2.2) reduce to the simple harmonic oscillator
equation

2y
4. MGl | (242.3)
dt I
The equation for the anglgt) is given by
I'(t)=Acoq" ,t)+Bsin(" ,t), (24.2.49)
where theangular frequencis given by
I 1 Mgy, hys | 24.2
Pl (physca pendulum) , (24.2.5)
S
andtheperiodis
! I
T :%—'! 2! SI (physca pendulum). (24.2.6)
0 cm

Substitutethe parallel axis theorem =m? +1_ ,into Eq.(24.2.6) with the resulthat

I I
T! 2! §+mg;’|" (physca pendulum). (24.2.7)

Thus, if the object is OsmallO in the sense that<ml’ , the expressions for the

physical pendulum reduce tbhos for the simple pendulum. The-component of the
angularvelocity isgiven by
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o ()= %(t) =-w,Asn(w,t) + o ,Bcogw,t). (24.2.8)

The coefficientsA and B can be determined form the initial conditions by settirg)
in EQs.(24.2.4) and(24.2.8) resulting in the conditions that

A=!(t=0)""!,
_ #Z(t =0), #Z,O (24.2.9)
# #

0 0

B

"

Therefore theequations for the angle(t) and! (t) :%(t) aregiven by

"

I(t)=1, coq" ;) +="2sin(" 1), (24.2.10)
0
I (t) :%(t) =#! " sin(! ;t)+! , coq(/ t). (24.2.11)

243 Worked Examples
Example 24.10Oscillating Rod

A physical pendulum consists of a uniform rod of lendttand masan pivoted at one
end The pendulum is initially displaced to one side by a small ahgland released

from rest with!/ <<1. Find the period of the pendulurbetermine the period of the
pendilum using (a) the torque method and (b) the energy method.

pivot P /\

b
®k<
¢

Figure 24.30scillating rod

(@) Torque Method:with our choice of rotational coordinate system the angular

acceleration is given by
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| 2w
I d 3

r=——
dt?

(24.3.1)

The force diagram on the pendulum is shawrrigure 24.4 In particular,there is an
unknown pivot force anthe gravitational force astt the center of mass of the rod.

Figure 24.4Freebody force diagram on rod

The torque about the pivot poit is given by

i =t "my. (24.3.2)

The rod is uniform, therefore the center of massdst&nced /2 from the pivot point.
The gravitational force acts at the center of mass, so the torque about the pivét point
given by .

[ =(d/2)©" my(#sin$$+cosd) =#(d/ 2)mgsin K. (24.3.3)

Therotational equation of motioabout P is then

=1t (24.3.9)
Substituting Eq9(24.3.3) and(24.3.1) into Eq.(24.3.4) yields
y d? ..
I (d/2)mgsin” = IPFIQ. (24.3.5)

When the angle of oscillation is small, vmay use the small angle approximation
sin!/ " I, thenEq.(24.3.5) becomes
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2
d f+(d/2)m99:o, (24.3.6)
dt I

which is a simple harmonic oscillator equation. The angular frequencysnodll

oscillatiors for the pendulum is
N /m . (243.7)
IP

The moment of inertia of a rod about the end pdmts | = (1/3)md? therefore the
angular fregency is

! (d/2)mgzl = (3/2)g (24.3.8)
(1/3)md d
with period
)
T= 2 =2/ 2d ) (24.3.9)
0 39

(b) Energy Metod: Take the zero point of gravitational potential energy to be the point
where the center of mass of the pendulum is at its lowest fagure 24.5) that is,
I =0.

L

T T ) U=o
mgé(l—wse)\

Figure 24.5Energy diagram for rod

When the pendulum is ah anglef the potential energy is
d n
U= ng(ll cos"). (24.3.10)

The kinetic energy of rotation about the pivot point is
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Ko'==11 2, (24.3.11)

The mechanical energy is then
E=U+K®= mg9(1! cos")+1| #2, (24.3.12)
2 2 P
with I, =(1/3)md?. There are no neoonservative forces actirgy assumption)so the

mechanical energy is constant, and theretfloe¢ime derivativeof energyis zerq

d
0= _e%in00 1 o 1 (243.13)
di 2 T

Recall thatw_=d6/dt and!  =d" /dt=d*/dt*, so Eq.(24.3.13) becomes

# d. 2
0=/ Z%gngzsm +I”F( . (24.3.14)

There are two solutions, ! , =0, in which casethe rod remains at the bottom of the
swing
d*o

dr®

0=mg§sin0+[ﬂ (24.3.15)

Using the small angle approximation, wktainthe simple harmonic oscillator equation
(Eq.(24.3.6))

d0 mg(d/?2)
+
dt* 1

P

0=0. (24.3.16)

Example 24.3Torsional Oscillator

A disk with moment of ingia about the center of masg rotates in a horizontal plane.

It is suspended by a thin, massless rod. If the disk is rotated away from its equilibrium
position by an anglé , the rod exerts a restoritgrqueabout the center of the disk with

magnitude given by _ =b" (Figure 24.6)whereb is a positive constanit t =0, the
disk is released from rest at an angular displacemert .ofind the subsequent time
dependence of the angular displacentn} .
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Figure 24.6Example 24.3vith exaggerated angle

Solution: Choose a coordinate system such tRats pointing upwardgFigure 24.6)
then the angular acceleration is given by

f=d” % (24.3.17)
- - dt2 . L] .
The torque about the center of mass is given in the statement of the problem as a

restoring torqugtherefore
="b#R. (24.3.18)

!
cm

The z-component of theotationalequationof motionis

2
-bO=1_ d ? . (24.3.19)
dt
This is a sirple harmonic oscillator equation with solution
6(t) = Acos(w, t) + Bsin(w, t) (24.3.20)

where the angular frequency of oscillation is given by

w,=\b/I_ . (243.21)

The z-component of the angular velocity is given by

) :%(t) =#! _Asn( ,t)+! Beog! t). (24.3.22)

The initial conditions att=0, are / (t=0)=A=!,, and (d/ /dt)(t=0)=" B=0.

Therefore

I(ty="!,cogy[b/1_ t). (24.3.23)
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Example 24.4Compound Physical Pendulum

A compound phyisal pendulum consists of a diskradius R and massam, fixed at the

end of a rod of mase) and lengthl (Figure 24.3). (a) Find the period of the pendulum.

(b) How does the period change if the disk is mounted to the rod by a frictionless bearing
so that it is perfectly free to spin?

-SC=

mdg

(@) (b)

Figure 247 (a) Example 24.4 (b) Freebody force diagam

Solution: We begin by choosing coordinates. li&tenormal to the plane of the motion
of the pendulum pointing out of the plane of thgure 24.1. Choose an angle variable
! such that countelockwise rotation corresponds to a positizecomponent of the
angular velocity. Thus a torque that points into the page has a negatos@ponent and
a torque that points out of the page has a posir@mmponent. Thdree-body force
diagram on the pendulum @lso shown in Figure 24.7Hn particular, there is an
unknown pivot force, the gravitational force acting at the center of mass of the rod, and
the gravitational force actinat the center of mass of the diskie torque about the pivot
point is given by . . o .

b= MO+T, " Mg. (24.3.249)

Recall that the vecto!rpvcm points from the pivot point to the center of mass of the rod a

distancel / 2 from the pivot. The vecto!rP’deA points from the pivot point to the center of

mass of the disk a distant¢efrom the pivot. Torque diagrams for the gravitational force
on the rod and the disk are showrfFigure 24.8 Both torquesabout the pivoarein the

negative -direction (into the plane of Figure 24.8) and hence have negative
components,

| =" (m(1/2)+ml)gsin#R. (24.3.25)
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(a) (b)
Figure 248 Torque diagram for (a) center of mass, (b) disk

In order to determine the moment okrha of the rigid compound pendulum we will
treat each piece separately, theform rod of lengthd and thedisk attached at the end
of the rod. The moment of inertia about the pivot pamts the sunmof the moments of
inertia of the two pieces,

=1, +I (24.3.26)

P P,rod P disc *

We calculated the moment of inertia of a rod about the end poi(tthapter 16.3.3)
with the result that

=1 12, (24.3.27)

Prod 3

We can use the parallel axis theorem to calculate the moment of inertia of the disk about
the pivot pointP,

I I +ml*. (24.3.28)

P disc = cm,disc
We calculated the moment of inertia of a disk about the center of (Ebessiple 16.3)

anddeterminedhat

L =inr (24.3.29)

cm,disc 2 d
Themoment of inertiaf the compound systeimthen

IP:%mI2+de2+%de2. (24.3.30)

Thereforetherotational equation of motiomecomes
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d2n .

| ((1/ 2)m, +m,)glsin” B = (((1/3)mr +m,)I2+(1/ 2)de2)?»@. (24.3.31)

When the angle of oscillation is small, we can use the small angle approximation
sin!/ ! I . ThenEg.(24.3.31) becomes simple harmonic oscillator equatjon

d7 ., (A/2)m +m,)gl ,
dt (1/3m +m)P+1/2QmR

(24.3.32)

Eq. (24.3.32) describes simple harmonic motion with an angular frequency of oscillation
when the disk is fixed in place given by

1/2 I
! fxed = w )mf; m)9 = (24.3.33)
(@/3m +m)I*+(1/2)mR
Theperiodis
! 2 2
T . :—”2' | 21 \/((1/3)m rml” +(1/2)mR . (24.3.34)
fxed ((1/2)m +m,)gl

(b) If the disk is not fixed to the rod, then it will not rotaieout its center of mass the
pendulum oscillates. Therefore the momehinertia of the disk about its center of mass
does not contribute to the moment of inedfathe physical pendulum about the pivot
point Notice that the pendulum is no longer a rigid boldye total moment of inertia is
only due to the rod and the dislkated as a point like object,

P

I :%mrlz+mdlz. (24.3.35)

Therefore the period of oscillation is given by

_2 \/ (@/3m +m)I” (24.3.36)

free  m (@ 2)m +m,)gl

free

Comparing Eq(24.3.36) to Eq.(24.3.34), we see that the period is smaller when the disk

is free and not fixed. From an energy perspective we can argue that when the disk is free,
it is not rotating about the center of mass. Therefore more of the gravitational potential
energy goes into theenter of mass translational kinetic energy than when the disk is free.
Hence the center of mass is moving faster when the disk is free so it completes one
period is a shorter time.

24-11



Appendix 24A Higher-Order Corrections to the Period for Larger
Amplitu des of a Simple Pendulum

In Section 24.1.1we foundthe period for a simple pendulum that undergoes small
oscillations is given by

!
T =?—'#2! \/g (smple pendulum).

0

How good is this approximation? If the pendulum is pulled out to an initial dggdleat

is not small (such that our first approximati@m/ "/ no longer holds) then our
expression for the period is no longer valid. ¥¥@ll calculate the firsorder (or higher
order) correction to the period of thendulum.

LetOs first consider the mechanical energy, a conserved quantity in this system. Choose
an initial state when the pendulum is released from rest at an/angfes need not be at

time t =0, andin fact later in this derivation weOll see that itOs inconvenient to choose
this position to be at =0. Choose for the final state the position and velocity of the bob

at an arbitrary time. Choose the ze point for the potential energy to be at the bottom

of the bobOs swing (FiguzéA.1).

[(1—cosB)
U=0 ——

Figure 24A.1 Energydiagram for simple pendulum

The mechanical energyhen the bob is released from rest at an ahgle
E =K. +U, =mgl (1! cos")). (24.C.37)
The tangentiatomponenbf thevelocity of the bob at an arbitrary timas given by

V; —_ 4.C.
! dt ( )

and the kinetic energat that time is
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K. ==mv,“==—mgl — 24.C.39
f " T2 dt ( )
The mechanical energyt timet is then
1 dl#
E, =K, +U, :Em%EtQ‘ +mgl(1$cos!). (24.C.40)

Becaus the tension in the string is always perpendicular to the displacement of the bob,
the tersion does no wotkwe neglect any frictional forceandhencemechanical energy

is constant E, = E . Thus

" 40
%mﬁl %§+ mgl (1( cos/ )=mgl (1( cos!,)
p (24.C.41)
" 40
ﬁl %-&0 = 2|—g(cos’ ( cos!)).

We can solve Equatiaf24.C.41) for the angular velocitgs a function of ,

d/ 29
—:,{—w/cosl " cosl . . 24.C.42
dt | ' ( )

Note that we have taken the positive square root, implyingdhatt " 0. This clearly

cannot always be the case, and we should change the sign of the square root every time
the pendulumOs directiohmootion changes. For our purposes, this is not an issue. If we
wished to find an explicit form for either(t) or t(/ ), we would have to consider the

signs in Equatioii24.C.42) more carefully.

Before proceeding, itOs worth considering the difference between EqR4id42) and
the equationfor the simple pendulum in the simple harmonic oscillator linvitere

cosO! 1—(1/2)68*. ThenEq.(24.C.42) reduces to

d’ 29 172,172
5 /Tg‘/_é 5 (24.C.43)

In both Equation$24.C.42) and(24.C.43) the last term in the square root is proportional
to the difference between the iaitipotential energy and the final potential energy. The
final potential energy for the two cases is plotted in FigRdgs 2 for #! <" <! on the

left and#! /2<" <! /2 on the right (the vertical scale is in unitsrofl ).
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Figures 24A.2 Potential energies adanction of displacement angle
It would seem to be to our advantage to express the potential energy for an arbitrary

displacement of the pendulum as the difference between two sqwrek this by first
recalling the trigopnometric identity

1! cos" = 2sin*(" / 2) (24.C.44)

with the result that Equatiai24.C.42) may be reexpressed as

%:\/ZI_T] Va2 12)" sin'(¢ 12). (24C49

Equation(24.C.45) is separable,

!
d =219 dt (24.C.46)
Jsnt(, 12" sn?¢ 12V
RewriteEquation(24.C.46) as
I
d 2 =2 %dt (24.C.47)
1 |
sin /2) j1r STE72)
' sn*(!./12)

The ratiosin(! /2)/sin(! ./ 2) in the square root in the denominator will oscillate (but

not with simple harmonic wtion) between! 1 and +1, and so we will make the
identification

_sn("/2)
sn("./12)

in! (24.C.48)
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Let b=sin(/./2), so that

I
sn—=bsn"
2

12 (24.C.49)
cos- = gzl = (1#b?sin?")¥2
2§79 '
Eq. (24.C.47) can then be rewritten integral form as
/
¢ - 255\@ dt (24C50
by1" sin®# |
From differentiating the first expression in Equat{@4.C.49), we have that

1 !/
—cos— d! =bcos" d”
2 2

n . 2n
dr = 2005 v —op NIFSTT (24.C.51)
coq! /2) J1#sin’(! 12)

o J1#sn?” »
N

Substituting the last equation i24.C.51) into the lefthand side of the integral in

(24.C.50) yields
| H 7] "
b  yuser ., d (24.C.52)

#b\/ll sn’" |11 b’sin®” #\/W

Thus the integral in Equatiq24.C.50) becomes

d/ _ g

This integral is one of a class of integrals knowreléiptic integrals We find a power
series solution to this integral by expanding the function

(1! bzsinz")”/z:1+%bzsin2”+gb4sin“"+#. (24.C.54)

The integral in Equatio(R4.C.53) then becomes

24-15



)?fﬁbzsinzl +ptsints +"""<(ng! = )\/gdt. (24.C.55)
2 8 |

Now letOs integrate over one period. tSed when! =0, the lowest point of the swing,
so thatsin/ =0 and! =0. OneperiodT has elapsed the second time the bob returns to

the lowest point, or whed =2" . Putting in the limits of thel -integral, we can
integrate term by term, noting that

o T B |
# Spsn’idl =4 S0 S (18 cog2!)) d!

o
0 { |
=1 1% g Sn@)( (24.C.56)
2 2& 2 ),
+
Lo loget
2 2 2
Thus, from Equatioi24.C.55) we have that
*2)§4+1b25in2! +3ptsints +"""‘(9‘d/ =% [t
0 2 8 oyl
; (24.C.57)
1 .,* g
2) +=)sSn*—L+"= 2T
) 2) 2 I
We can now solve for the period,
'$ 1. ," )
T=2! |—ol+=sn _I+#f' (24.C.58)
g% 47 2

If the initial angle!. <<1 (measured in radians), the!w'mz(!i /12)! !i2/4 and the period
is approximatelf

ST P S P
T!2 \E TR TE (24.C.59)

where

T, =2/ il (24.C.60)

g

is the period othe simple pendulum with the standard small angle approximation. The
first order correction to the period of the pendulum is then
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1 n
T, =0T (24.C.61)

Figure 24A.3 below shows the three functions given in Equat{@d.C.60) (the
horizontal, or red plot if seen in color), Equati@d.C.59) (the middle, parabolic or
green plot) and the numericaliytegrated function obtaideby integrating the expression
in Equation(24.C.53) (the upper, or blue plot) between=0 and /! =2" . The plots

demonstratehtat Equation(24.C.60) is a valid approximation for small values of, and
that Equation(24.C.59) is a very good approximation for all but the largest amplitudes of

oscillation. The vertical axis is in units afl /g. Note the displacement of the
horizontal axis.

1 0% .06 04020 02 04 06 0F 1

b

Figure 24A.3 Pendulum Péod Approximaions as Functions of Amplitude
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