Solutions for 8.01x, homework 6 (Fall 2001)

1 Problem 1

The total weight of the two painters and the board is (80 + 20 + 60)kg × g = 1568N. The total weight has to be supported by the two ropes

$$F_{T_1} + F_{T_2} = 1568N \tag{1}$$

In a static situation, the overall torque on the the board has to vanish. Picking the end of the board where rope 1 is attached as the pivot point and the origin of the coordinate system x = 0, we get the following condition:

$$\sum \tau = 0 = 784 \text{N} \times 1 \text{m} + 196 \text{N} \times 2.5 \text{m} + 588 \text{N} \times x_B - F_{T_2} \times 5 \text{m},$$
 (2)

where x_B is the position of painter B. Rearranging this equation, we find the following relation between the tension in the second rope and x_B :

$$F_{T_2} = 255N + 118N \times x_B/m.$$
 (3)

Therefore F_{T_2} increases linearly with the position of painter B. The minimal F_{T_2} is 255N, the maximum for F_{T_2} for $x_B = 5$ m is 843N. Rope 2 will therefore not break.

By rearranging and inserting equ. (3) into equ. (1), we get the following equation for the tension in rope 1 (close to painter A):

$$F_{T_1} = 1568N - (255N + 118N \times x_B/m).$$
 (4)

The tension in rope 1 decreases linearly with increasing x_B . It drops below the limit of 1000N for $x_B > 2.65$ m. I.e. painter B has to be at least 2.65m from the end of the board to keep rope 1 (the one on painter A's side) from breaking.

2 Problem 2

a We find the force F_{musc} by requiring that the total torque on the spine vanishes. The pivot point is where the spine is supported by the lumbo-sacral disc. F_{disc} therefore doesn't contribute to the torque.

$$\sum \tau = 0 = F_{musc} \times \sin 12^{o} \times \frac{2}{3}L - w_{trunk} \times \frac{1}{2}L \times \cos 35^{o} - w_{head,arms} \times L \times \cos 35^{o}$$
 (5)

Solving for F_{musc} and inserting the numbers for w_{trunk} and $w_{head,arms}$ this yields

$$F_{musc} = (0.4 \times 60 \text{kg} \times 9.8 \frac{m}{s^2} \times \frac{1}{2} L + 0.260 \text{kg} \times 9.8 \frac{m}{s^2} \times L) \cos 35^o \times \frac{3}{2L \times \sin 12^o}, \tag{6}$$

giving $F_{musc} = 1390$ N.

b To find the magnitude of F_{disc} , we sum up the components of F_{musc} , w_{trunk} and $w_{head,arms}$. The angle between F_{musc} and the horizontal is $35^{o} - 12^{o} = 23^{o}$.

$$\sum F_x = 0 = F_{disc_x} - F_{musc} \cos 23^o \tag{7}$$

$$\sum F_y = 0 = F_{disc_y} - F_{musc} \sin 23^o - w_{trunk} - w_{head,arms}$$
 (8)

This gives $F_{disc_x} = 1280 \text{N}$ and $F_{disc_y} = 896 \text{N}$. The magnitude of F_{disc} is $F_{disc} = \sqrt{F_{disc_x}^2 + F_{disc_y}^2} = 1562 \text{ N}$. The angle β of F_{disc} relative to the horizontal is $\arctan F_{disc_y}/F_{disc_x} = 35^o$.

- **c** The force F_{disc} corresponds to around 2.5 times the body weight.
- **d** As the angles β and Θ are identical, the compressive force acting along the normal vector of the disc is equal to F_{disc} , but in opposite direction.
- e When lifting the weight, $w_{head,arms}$ is doubled. Following the same calculation as above, F_{muscle} increases to 2085N and the magnitude of F_{disc} increases to 2310N. The resulting angle β is 33.8°. The normal force on the disc is 2309N.
- **f** As equ. (6) shows, the force exerted by the muscle is proportional to $\cos \Theta$. Therefore, one should keep the spine vertical ($\Theta = 90^{\circ}$), such that F_{muscle} vanishes and F_{disc} is just given by $w_{head,arms} + w_{trunk} +$ the weight to be lifted.