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Example 1: Cylindrical Capacitor 

 
Consider a solid cylindrical conductor of radius a surrounded by a coaxial 

cylindrical shell of inner radius b, as shown in Figure 1.1. The length of both cylinders is 
l and we take it to be much larger compared to b-a, the separation of the cylinders, so that 
edge effects can be neglected. The capacitor is charged so that the inner cylinder has 
charge +Q while the outer shell has a charge –Q. 

 

  
(a) (b) 
 

Figure 1.1   (a) A cylindrical capacitor. (b) End view of the capacitor. The electric field is 
non-vanishing only in the region a < r < b.  
 
To obtain the capacitance, we first compute the electric field. Using Gauss’s law, we 
have 
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where λ=Q/l is the charge/unit length. The potential difference can then be obtained as: 
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which yields 
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Example 2: Spherical Capacitor 
 
A spherical capacitor consists of two concentric spherical shells of radii a and b, as 
shown in Figure 2.1a. Figure 2.1b shows how the charging battery is connected to the 
capacitor. The inner shell has a charge +Q uniformly distributed over its surface, and the 
outer shell an equal but opposite charge –Q.  
 

  
 
Figure 2.1  (a) A spherical capacitor consisting of two concentric spherical shells of radii 
a and b. (b) Charging of the spherical capacitor 
 
The capacitance of this configuration can be computed as follows: The electric field in 
the region a < r < b is given by  
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The potential difference between the two conducting shells is: 
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With ∆V=Va-Vb, we have 
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An isolated conductor can also have a capacitance. In the limit whereb , the above 
equation becomes  
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Thus, for a single isolated spherical conductor of radius R,  
 
 04C πε=  (2.6) 
 
The above expression can also be obtained by noting that a sphere of radius R has 
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As expected, the capacitance of an isolated charged sphere only depends on its geometry 
(the radius R).  
   

 
Example 3: Capacitor voltage divider 
 
The charge  on a capacitor C  is related to the voltage V  across it  Q
 
 Q CV=  (3.1) 

 
Consider two capacitors,  and , in series across an alternating voltage source, 1C 2C

0 sin(2 )V V ftπ= , as shown in Figure 3.1. 
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Figure 3.1 Capacitor voltage divider 

 
What is the voltage across C ?  The two capacitors in series look like a single capacitor  2
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 as far as the voltage source is concerned.  The same current, dQI

dt
= , 

flows through both capacitors and produces the same alternating charge on them. 
 
The current is then 
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So the alternating charge on the two capacitors becomes via integration 
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where V is the voltage across both capacitors in series, and  V1 and V2 are the voltages 
across C1 and C2, respectively. 
 
Solving for V2  we get 
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The ratio V2/V describes the voltage divider and is given by 
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We have what’s called a capacitative voltage divider for ac voltage that works 
independently of frequency, at least in its ideal form.  
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In the HVPS (high voltage power supply), C1 100pF= and 2 1000pFC = , so the smaller 

voltage 2
1
11

V = V appears across the larger capacitor C and the larger voltage 2

1
10
11

V = V appears across the smaller capacitor —just the opposite of a resistive voltage 

divider (or pot) which you have seen and used before, where the larger voltage appears 
across the larger resistor. 
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