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V Capacitor - Worked Examples

Example 1: Cylindrical Capacitor

Consider a solid cylindrical conductor of radius a surrounded by a coaxial
cylindrical shell of inner radius b, as shown in Figure 1.1. The length of both cylinders is
[ and we take it to be much larger compared to b-a, the separation of the cylinders, so that
edge effects can be neglected. The capacitor is charged so that the inner cylinder has
charge +Q while the outer shell has a charge —Q.
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Figure 1.1 (a) A cylindrical capacitor. (b) End view of the capacitor. The electric field is
non-vanishing only in the region a < r < b.

To obtain the capacitance, we first compute the electric field. Using Gauss’s law, we
have
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where A=Q/[ is the charge/unit length. The potential difference can then be obtained as:
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Example 2: Spherical Capacitor

A spherical capacitor consists of two concentric spherical shells of radii a and b, as
shown in Figure 2.1a. Figure 2.1b shows how the charging battery is connected to the
capacitor. The inner shell has a charge +Q uniformly distributed over its surface, and the
outer shell an equal but opposite charge —Q.

Figure 2.1 (a) A spherical capacitor consisting of two concentric spherical shells of radii
a and b. (b) Charging of the spherical capacitor

The capacitance of this configuration can be computed as follows: The electric field in
the region a < r < b is given by
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The potential difference between the two conducting shells is:
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With AV=V,-V;, we have

=L _4ns, ( ab j 2.4)
AV b

An isolated conductor can also have a capacitance. In the limit whereb — «, the above
equation becomes
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Thus, for a single isolated spherical conductor of radius R,
C =4rs,R. (2.6)

The above expression can also be obtained by noting that a sphere of radius R has

V= 0 , and V=0 at infinity. This yields
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As expected, the capacitance of an isolated charged sphere only depends on its geometry
(the radius R).

Example 3: Capacitor voltage divider
The charge O on a capacitor C is related to the voltage V' across it
o=Cr (3.1)

Consider two capacitors, C;, and C,, in series across an alternating voltage source,
V =V, sin(27 ft), as shown in Figure 3.1.
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Figure 3.1 Capacitor voltage divider

What is the voltage across C,? The two capacitors in series look like a single capacitor
CC . d

o =——1"2 _ ag far as the voltage source is concerned. The same current, / :—Q,

(C,+C) dt

flows through both capacitors and produces the same alternating charge on them.

The current is then

1= d_Q =C, d_V (3.2)
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So the alternating charge on the two capacitors becomes via integration
Q=[1dt=C y=cv,=Cy, (3.3)

where V' is the voltage across both capacitors in series, and V; and V, are the voltages
across C; and (, respectively.

Solving for V, we get
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The ratio V>/V describes the voltage divider and is given by
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We have what’s called a capacitative voltage divider for ac voltage that works
independently of frequency, at least in its ideal form.
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In the HVPS (high voltage power supply), C, =100pF and C, =1000pF, so the smaller

voltage V, :%V appears across the larger capacitor C,and the larger voltage

V, = %V appears across the smaller capacitor C,—just the opposite of a resistive voltage

divider (or pot) which you have seen and used before, where the larger voltage appears
across the larger resistor.
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