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XI. Inductance - Worked Examples 

 
Example 1: Solenoid 
 
A long solenoid with length l and a radius R consists of N turns of wire, as shown in the 
figure below. 

 
 
(a) Neglecting the end effects, find the self-inductance. 
 
(b) A current I is passed through the coil. Find the energy stored in the system.  
 
Solution: 
 
(a) Using Ampere’s law, the magnetic field inside a solenoid is 
 

 0
0

NIB nI
l

µ µ= =  (1.1) 

 
where n is the number of turns per unit length. The magnetic flux through each turn is  
 
 2

0 0( )B
2BA nI R nI Rµ π µ πΦ = = ⋅ =  (1.2) 

 
Thus, the self-inductance is  

 2 2
0

BNL n
I

µ π R lΦ
= =  (1.3) 

 
(b) The energy of the system is given by  
 

 ( )
2

22 2 2 2 2
0 0

0 0

1 1 1 ( ) (
2 2 2 2B

BU LI n I R l nI R l Rµ π µ π π
µ µ

= = = = 2 )l  (1.4) 

 
Since 2R lπ  corresponds to the volume of the solenoid, u B2

0/ 2B µ=  represents the 
magnetic energy density.  
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Example 2: Toroid 
 
A toroid consists of N turns and has a rectangular cross section, with inner radius a, outer 
radius b and height h (see figure). 
 

 
(a) Find its self-inductance L. 
 
(b) Find the total magnetic energy stored in the toroid. 
 
Solution: 
 
(a) To find the self-inductance, we first need to know the magnetic field everywhere. 
From symmetry consideration, the magnetic field inside the toroid must be circular, i.e., 
along the azimuthal direction. Therefore, in applying Ampere’s law, we choose the 
integration path to be a circle of radius r.  
 

 
This gives 
 
 0 0(2 ) encd B r I Nπ µ µ⋅ = = =∫ B s I  (2.1) 
or 
 

 0

2
NIB
r

µ
π

=  (2.2) 

 
The magnetic flux through one turn of the toroid may be obtained by integrating over the 
rectangular cross section, with dA hdr=  as the differential area element: 
 

 0 0 ln
2 2

b

B a

NI NIh bd hdr
r a

µ µ
π π

  Φ = ⋅ = =  
  ∫ ∫B A 

  (2.3) 

 
The total flux is . Therefore, the self-inductance is BNΦ

 2



 

 
2

0 ln
2

B N hN bL
I a

µ
π

Φ = = 
 


  (2.4) 

 
(b) The energy density of the magnetic field is 
 

 
2 22

0
2 2

0

1
2 8B

N IBu
r

µ
µ π

= =  (2.5) 

 
The total energy stored in the magnetic field can be found by integrating over the volume. 
We choose the differential volume element to be a ring with radius r, width dr and height 
h, i.e., 2dV rhdrπ= . This yields 
 

 
2 2 2 2

0 0
2 2 2

8 4
b

B B a

N I N I h bU u dV rhdr
r a

µ µπ
π π

 
= = = 

 
∫ ∫ ln  (2.6) 

 
 

Since 21
2B L=U , the self-inductance may also be obtained as I

 

 
2

0
2

2 ln
2

B N hU bL
I a

µ
π

= =  (2.7) 

 
which agrees with the result obtained in part (a).  
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Example 3: Magnetic energy density 
 
A wire of nonmagnetic material with radius R and length l carries a current I which is 
uniformly distributed over its cross-section. What is the magnetic energy per unit length 
inside the wire? 
 
Solution: 
 
Applying the Ampere’s law, the magnetic field at distance r R≤  can be obtained as: 
 

 ( ) 2
0 0 22 ( ) (I 2 )B r J r r

R
π µ π µ π

π
 = =  
 

 (3.1) 

 
which yields 

 0
22

IrB
R

µ
π

=  (3.2) 

 
 
Since the magnetic energy density (energy per unit volume) is given by 
 

 
2

02B
Bu
µ

=  (3.3) 

 
the total energy stored in the system becomes  
 

 ( )
2 22 4

30 0
40 0

0

2
2 4 4

R RI l I l
4 4

B RU rl dr r dr
R R

µ µπ
µ π π

 
= = = 

 
∫ ∫   (3.4) 

 
Thus, the magnetic energy per unit length is equal to  
 

 
2

0/
16B

IU l µ
π

=  (3.5) 
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Example 4: Mutual inductance 
 
An infinite straight wire carrying current I is placed above a rectangular loop of wire with 
width  and length L, as shown in the figure below. w
 

 
 
 
Determine the mutual inductance of the system. 
 
Solution: 
 
To calculate the mutual inductance M, we first need to know the magnetic flux through 
the rectangular loop. The magnetic field at a distance r away from the straight wire is 

0 / 2B I rµ π= , using Ampere’s law. The total magnetic flux BΦ  through the loop can be 
obtained by summing over contributions from all differential area elements dA =L dr: 
 

 0 0 ln
2 2

h w

B B h

IL ILdr h wd d
r h

µ µ
π π

+ +Φ = Φ = ⋅ = = 
 ∫ ∫ ∫B A 

  (4.1) 

 
Thus, the mutual inductance is 
 

 0 ln
2

B L h wM
I h

µ
π

Φ = = 
 

+ 
  (4.2) 
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Example 5: Mutual inductance 
 
A long solenoid with length l and a radius R consists of N1 turns of wire. If an insulated 
coil of N2 turns is wrapped around it, calculate the mutual inductance, assuming that all 
the flux from the solenoid passes through coil 2. 
  

 
 
Solution: 
 
The magnetic flux through each turn of the second coil due to the solenoid is 
 

 0 1
21

NIBA
l

Aµ
Φ = =  (5.1) 

 
where 0 1 /B NI lµ= is the uniform magnetic field inside the solenoid. Thus, the mutual 
inductance is  
 

 0 1 22 21

1

N N ANM
I l

µΦ
= =  (5.2) 
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Example 6: RL circuit 
 
Consider the circuit shown in the figure below.  
 

 
Determine the current through each resistor 
 
(a) immediately after the switch is closed 
 
(b) a long time after the switch is closed. 
 
Suppose the switch is reopened a long time after it’s been closed, what is each current 
 
(c) right after it is opened? 
 
(d) after a long time?                                           
 
Solution: 
 
(a) Immediately after the switch is closed, the current  
through the inductor is zero due to the induced emf.  
Therefore, .  Since 03 =I 1 2 3I I I= + , we have 1 2I I=  
 
Applying Kirchhoff’s rules to the first loop yields 
 

 1 2
1 2

I I
R R
ε

= =
+

 

 
(b) After the switch has been closed for a long time, there is no i
inductor and the currents will be constant. Kirchhoff’s loop (vol
 
 1 1 2 2 0I R I Rε − − =  
for the first loop, and  
 
 2 2 3 3 0I R I R− =  

 

(6.1) 

nduced emf in the 
tage) rule gives 

(6.2) 

(6.3) 
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for the second. Combining the two equations with the junction rule 1 2 3I I I= + , we obtain 
 

 

( )2 3
1

1 2 1 3 2 3

3
2

1 2 1 3 2 3

2
3

1 2 1 3 2 3

R R
I

R R R R R R

RI
R R R R R R

RI
R R R R R R

ε

ε

ε

+
=

+ +

=
+ +

=
+ +

 (6.4) 

 
(c) Immediately after the switch is opened, the current through R1 is zero, i.e., . 
This implies that . On the other hand, loop 2 now forms a decaying RL circuit 
and I

01 =I

2 3 0I I+ =

3 starts to decrease. Thus,  
 

 2
3 2

1 2 1 3 2 3

RI I
R R R R R R

ε
= − =

+ +
 (6.5) 

   
(d) A long time after the switch has been closed, all currents will be zero, i.e., 

. 1 2 3 0I I I= = =
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Example 7: RL circuit 
 
In the circuit shown below, suppose the circuit is initially open. At time t  it is thrown 
closed.  What is the current in the inductor at a later time t. 

0=

 

 
 
Solution: 
 
Let the currents through 1R , 2R  and L be 1I , 2I and I , respectively. From the Kirchhoff’s 
junction rule, we have 1 2I I + I= . Applying the Kirchhoff’s voltage rule to the left loop 
yields 
 
 ( )2 1 2 2 0I I R I Rε − + − =  (7.1) 
 
Similarly, for the outer loop, we have 
 

 ( )2 1
dII I R L
dt

ε − + =  (7.2) 

 
The two equations can be combined to give  
 

 2 2
dII R L
dt

=  (7.3) 

 
which implies  

 2
2

L dII
R dt

=  (7.4) 

 
Substituting into the first equation the above expression for 2I , we obtain 
 

 1
2

0L dI dII R L
R dt dt

ε
 

− + − 
 

=  (7.5) 

 
which can be simplified to be 
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 1 2
1

2

0R R dIIR L
R dt

ε
 +

− −  
 

=

2

 (7.6) 

 
Dividing the equation by 1 2( ) /R R R+  leads to 
 

 ' ' dIIR L
dt

ε 0− − =  (7.7) 

 
where  
 

 1 2 2

1 2 1 2

' , 'R R RR
R R R R

εε= =
+ +

 (7.8) 

 
The differential equation can be solved and the solution is given by 
 

 ( ) ( ' /' 1
'

R t LI t e
R )ε −= −  (7.9) 

Since  

 2 1 2

1 2 1 2 1

/( )'
' /( )

R R R
R R R R R R

εε ε+
=

+
=  (7.10) 

 
the current through the inductor may be rewritten as 
 

 ( ) ( ' /

1

1 R t LI t e
R )ε −= −  (7.11) 
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Example 8: LC circuit 
 
Consider the circuit below. Suppose the switch which has been connected to point a for a 
long time is suddenly thrown to b at t = 0.  
 

 
 
Find the following: 
  
(a) the frequency of oscillation of the LC circuit. 
 
(b) the maximum charge that appears on the capacitor. 
 
(c) the maximum current in the inductor. 
 
(d) total energy the circuit possesses at any time t? 
 
 
Solution: 
 
(a) The (angular) frequency of oscillation of the LC circuit is given by 

2 1/f LCω π= = . Therefore, the frequency is  
 

 1
2

f
LCπ

=  (8.1) 

 
(b) The maximum charge stored in the capacitor before the switch is thrown to b is  
 
 Q Cε=  (8.2) 
 
(c) The energy stored in the capacitor before the switch is thrown is  
 

 21
2CU Cε=  (8.3) 

 
On the other hand, the magnetic energy stored in the inductor is  
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 21
2BU L= I  (8.4) 

  
 
Thus, when the current is at its maximum, all the energy originally stored in the capacitor 
is now in the inductor: 
 

 2
max

1 1
2 2

C LIε = 2  (8.5) 

 
This implies  
 

 max
CI
L

ε=  (8.6) 

 
(d) At any time, the total energy in the circuit would be equal to the initial energy that the 
capacitance stored, that is 
 

 21
2C BU U U Cε= + =  (8.7) 
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