We strongly recommend that you read about a topic before it is covered in lectures.

<table>
<thead>
<tr>
<th>Lecture Date</th>
<th>Topics Covered</th>
<th>Reading from Giancoli</th>
</tr>
</thead>
<tbody>
<tr>
<td>#23 Mon 4/8</td>
<td>Review Exam 2.</td>
<td></td>
</tr>
<tr>
<td>Wed 4/10</td>
<td>Exam 2 covering assignments 4, 5 & 6, and all material covered in the reading assignments and in lectures through Mon 4/1 (last names A-K in 26-100, L-Z in Walker)</td>
<td></td>
</tr>
<tr>
<td>#24 Fri 4/12</td>
<td>Transformers - Car Coils</td>
<td>Sect. 26-4, 26-5 & 29-6</td>
</tr>
<tr>
<td></td>
<td>RC Circuits</td>
<td></td>
</tr>
<tr>
<td>#25 Wed 4/17</td>
<td>Driven LRC circuits - Resonance</td>
<td>Chapter 31 through Sect. 31-6</td>
</tr>
<tr>
<td></td>
<td>Metal Detectors (beach/airport)</td>
<td>Lecture Supplement</td>
</tr>
</tbody>
</table>

Due before 4 PM, Wednesday, April 17 in 4–339B.

Problem 7.1
Ideal transformer.
Giancoli 29-42.

Problem 7.2
A transformer for impedance matching.
The generator in the diagram has an internal resistance \(r \) of 0.4 \(\Omega \) and produces an EMF between the points \(A \) and \(B \) of \(\mathcal{E}(t) = 150 \cos(\omega t) \) (in volts), with \(\frac{\omega}{2\pi} = 50 \text{ Hz} \).

\[\begin{array}{c}
\mathcal{E}(t) \\
\hline \\
A \\
\hline \\
B
\end{array} \quad \begin{array}{c}
A' \\
\hline \\
B'
\end{array} \quad \begin{array}{c}
r = 0.4 \Omega \\
\hline \\
R = 15 \Omega
\end{array} \]

(a) If the load resistor \(R = 15 \Omega \) (with \(A \) connected to \(A' \), and \(B \) to \(B' \)), what average power will be delivered to the load?

The maximum power is delivered to a load when the load “impedance” (in this case the resistance \(R \)) is equal to the generator impedance (resistance \(r \)). In our case, \(R \gg r \). However, the load and generator impedances can be matched by connecting a transformer between the terminals \(AB \) (primary side of the transformer with \(N_1 \) windings) and \(A'B' \) (secondary side of the transformer with \(N_2 \) windings).

(b) What should the ratio \(\frac{N_1}{N_2} \) be for an ideal transformer so that there will be a maximum transfer of power to the load \(R' \)?

(c) How much power is then delivered to the load?
Problem 7.3
RC circuit.
Giancoli 26-45.

Problem 7.4
RC circuit.
Giancoli 26-46.

Problem 7.5
Electromagnet with small air gap.
An electromagnet has a steel core ($\kappa_M \approx 2500$) with an approximately circular cross sectional area of 4 cm2. The radius of the magnet is 7 cm; there is a small air gap of only 2.5 mm (see sketch). The current through the magnet’s 120-turn coil is 15 A. What will the magnetic field strength be (approximately) inside the air gap?

![Electromagnet Sketch](image)

Problem 7.6
RC Circuit.
A series RC circuit (see left diagram below) is driven by a periodic square wave voltage $V(t)$ with a period $T = 0.3$ sec (see right diagram). $V(t) = 0$ V for $t < 0$; after $t = 0$, the voltage alternates between 15 V and 0 V; $R = 40 \, \Omega$, $C = 150 \, \mu F$. We will call the voltages across the capacitor and the resistor $V_C(t)$ and $V_R(t)$, respectively.

![RC Circuit Diagram](image)

(a) Calculate the current $I(t)$ in the circuit, the voltage $V_C(t)$, and the power delivered by the driving source as a function of time for the first full period ($0 < t < T$).

(b) Sketch in *one graph* $V(t)$, $V_C(t)$, and $V_R(t)$ in the time interval $0 < t < 2T$.
(c) How much energy is dissipated in the resistor during one period?
 Hint: $RC << T$, thus $e^{-T/2RC} << 1$.

Recitations.

There are 28 recitation sections (see the 8.02 Website). If for any reason you want to change section, please see Maria Springer in 4-352.