You may use these freely unless the problem specifically prescribes a different approach.

$$
\mathbf{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{\mathbf{r}}
$$

$$
\mathbf{F}=q \mathbf{E}
$$

$$
\oint \mathbf{E} \cdot \mathbf{d s}=-\frac{d \Phi_{B}}{d t}
$$

$$
C \equiv \frac{Q}{\Delta V}
$$

$\oint \mathbf{B} \cdot \mathbf{d s}=\mu_{0}\left(i_{\text {encl }}+\varepsilon_{0} \frac{d \Phi_{E}}{d t}\right)$

$$
U_{E}=\frac{C(\Delta V)^{2}}{2}=\frac{Q^{2}}{2 C}
$$

$$
\begin{aligned}
& \varepsilon_{0} \cong 9 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \\
& \frac{1}{4 \pi \varepsilon_{0}} \cong 9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} \mathrm{C}^{-2}
\end{aligned}
$$

$$
\mathbf{F}=q(\mathbf{v} \times \mathbf{B})
$$

$$
\mathbf{d F}=i(\mathbf{d s} \times \mathbf{B}) \quad ; \quad i=d q / d t
$$

$$
P=i V=i^{2} R=V^{2} / R
$$

$$
|\boldsymbol{\mu}|=N i A
$$

$$
\mu_{0}=4 \pi \times 10^{-7} \frac{\mathrm{~T} \cdot \mathrm{~m}}{\mathrm{~A}}
$$

$$
|\mathrm{B}|=\mu_{0} n i
$$

$$
\mathbf{E}=\rho \mathbf{j}
$$

$$
R=\rho / / A
$$

$$
V=i R
$$

$$
\boldsymbol{\tau}=\boldsymbol{\mu} \times \mathbf{B}
$$

$$
\mathbf{d B}=\frac{\mu_{0} i}{4 \pi} \frac{\mathbf{d s} \times \mathbf{r}}{r^{3}}
$$

$$
\mathrm{E}=-N \frac{d \phi_{B}}{d t}
$$

$$
L=\frac{N \phi}{i} ; \quad M_{2,1}=\frac{N_{2} \phi_{2,1}}{i_{1}}
$$

$$
\mathrm{E}=-L \frac{d i}{d t} ; \quad \mathrm{E}_{2}=-M \frac{d i_{1}}{d t}
$$

$$
U_{L}=\frac{1}{2} L i^{2}
$$

$$
\tau=R C
$$

$$
\tau=L / R
$$

$$
\omega_{0}=(L C)^{-1 / 2}
$$

$$
X_{C}=\frac{1}{\omega C}
$$

$$
i_{m}=\frac{\mathrm{E}_{m}}{Z}=\frac{\mathrm{E}_{m}}{\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]^{1 / 2}}
$$

$$
\Delta p=\Delta U / c
$$

$$
\mathbf{S}=\frac{\mathbf{E} \times \mathbf{B}}{\mu_{0}} \quad P=\frac{|\mathbf{S}|}{c}
$$

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}} ; \quad \nabla \cdot \mathbf{B}=0 \quad \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \quad \nabla \times \mathbf{B}=\mu_{0} \mathbf{j}+\mu_{0} \varepsilon_{0} \frac{\partial \mathbf{E}}{\partial t}
$$

$$
\frac{\omega}{k}=\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \equiv c
$$

$$
\frac{\partial^{2} E_{z}}{\partial x^{2}}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} E_{z}}{\partial t^{2}} \quad \frac{E_{m}}{B_{m}}=c
$$

