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We consider the concept of field line motion in classical electromagnetism for crossed
electromagnetic fields and suggest definitions for this motion that are physically meaningful but not
unigue. Our choice has the attractive feature that the local motion of the field lines is in the direction
of the Poynting vector. The animation of the field line motion using our approach reinforces
Faraday'’s insights into the connection between the shape of the electromagnetic field lines and their
dynamical effects. We give examples of these animations, which are available on the Wetn3 ©
American Association of Physics Teachers.
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|. INTRODUCTION meaning:®!! This skepticism is in part due to the fact that
there is no unique way to define the motion of field lines.
Classical electromagnetism is a difficult subject for begin-Nevertheless, the concept has become an accepted and useful
ning students. This difficulty is due in part to the complexity one in space plasma physités!In this paper we focus on a
of the underlying mathematics which obscures the physicsparticular definition of the velocity of electric and magnetic
The standard introductory approach also does little to confield lines that is useful in quasi-static situations in which the
nect the dynamics of electromagnetism to the everyday exE and B fields are mutually perpendicular. Although this
perience of students. Because much of our learning is don@efinition can be identified with physically meaningful quan-
by analogy students have a difficult time constructing con- tities in appropriate limits, it is not unique. We choose here a
ceptual models of the ways in which electromagnetic fieldgparticular subset of the infinite range of possible field line
mediate the interactions of the charged objects that generagaotions.
them. However, there is a way to make this connection for Previous work in the animation of electromagnetic fields
many situations in electromagnetism. includes film loops of the electric field lines of accelerating
This approach has been known since the time of Faradagharge¥® and of electric dipole radiatiolt. Computers have
who originated the concept of fields. He was also the first tdoeen used to illustrate the time evolution of quasi-static
understand that the geometry of electromagnetic field lines iglectro- and magneto-static fieltfs}” although pessimism
a guide to their dynamical effects. By trial and error, Faradayhas been expressed about their educational utility for the av-
deduced that the electromagnetic field lines transmit a tererage studenf Electric and Magnetic Interactions a col-
sion along the field lines and a pressure perpendicular to thiection of three-dimensional movies of electric and magnetic
field lines. From his empirical knowledge of the shape of thefields'® The Mechanical Universeses a number of three-
field lines, he was able to understand the dynamical effectdimensional animations of the electromagnetic ffél#lax-
of those fields based on simple analogies to strings andell Worldis a real-time virtual reality interface that allows
ropes> users to interact with three-dimensional electromagnetic
As we demonstrate in this paper, the animation of the mofields?! References 11 and 15 use essentially the method we
tion of field lines in dynamical situations reinforces Fara-define here for the animation, although they do not explicitly
day’s insight into the connection between shape andlefine the velocity field that we will introduce. The other
dynamics® Animation allows the student to gain insight into citations on the animation of field lines are not explicit about
the way in which fields transmit stresses by watching howthe method they use. None of these treatments focuses on
the motion of material objects evolve in response to thoséelating the dynamical effects of fields to the shape of the
stressed.Such animations enable the student to better makéeld lines. Our emphasis on dynamics and shape is similar to
the intuitive connection between the stresses transmitted byther pedagogical approaches for understanding forces in
electromagnetic fields and the forces transmitted by morelectromagnetisrft?
prosaic means, for example, by rubber bands and strings.
We emphasize that we consider here only the mathematics
of how to animate field line motion and not the pedagogical, NONUNIQUENESS OF FIELD LINE MOTION
results of using these animations in instruction. We are cur-
rently using these animations in an introductory studio phys- To demonstrate explicitly the ambiguities inherent in de-
ics course at MIT that most closely resembles thefining the evolution of field lines, consider a point charge
SCALE-UP course at NCS8The instruction includes pre- with chargeg and massn, initially moving upward along the
and post-tests in electromagnetism, with comparisons to comegative z-axis in a constant background fieEl= — E2.
trol groups taught in the traditional lecture/recitation format.The position of the charge as a function of time is given by
Although some of the results of this study have appeared in
preliminary form? the full study is still in progress, and the X chargdt) = (3t2=3t+ 9)2 (1)
results will be reported elsewhere.
We note that the idea of moving field lines has long bee
considered suspect because of a perceived lack of physical Vagdt)=(t—3)2. 2

rland its velocity is given by
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Fig. 1. Electric field lines for a point charge in a constant electric field. We

also show the Maxwell stress vectal§=T-ndA on a spherical surface (a)
surrounding the charge. Because the magnitude of the stress vector varies
greatly around the surface, the length of the displayed vectors is propor-
tional to the square root of the length of the stress vector, rather than to }
length of the stress vector itself.

The charge comes to rest at the origintat3 time units, and \
then moves back down the negatzaxis. / \
Figure 1 shows the charge at the origin when it comes to J
rest. The strength of the background field is such that the /Kw'»«».ﬁwm‘.\ \
total field is zero at a distance of one unit above the charge. r 7\ \
Figure 1 also shows a set of electric field lines at this time for // \ \ \
the total field(that is, the field of the charge plus that of the
constant fielgl Note that in Fig. 1 and in our other figures, /
we make no attempt to have the density of the field lines
represent the strength of the figlthere are difficulties asso-
ciated with such a representation in any ésaVe discuss
other features of Fig. 1 below.
Now suppose we want to make a movie of the scenario in
Fig. 1, showing both the moving charge and the time-
changing electric field lines. How would we do this? Of (b)
course, there is no problem in animating the charge motion,. o
Fig. 2. Two frames of a method for animating field lines for a charge

but there are an infinite number of ways of animating themovinginaconstant field. At any instant of time, we begin drawing the field

ﬁe',d Iing motion. We show one of thes.e Ways_in _Fig' 2'Iines from the six spheres, which are fixed in spacdalnthe particle is still
which gives two snapshots of the evolution of six differentout of sight on the negativeaxis, but the influence of its field can be seen.

field lines. The animation method that we use here is a# (b), the particle is at the origin and has come to rest before beginning to
follows (this method isot the method we use laferAt any ~ move back down the negatieaxis.
time (frame), we start drawing each of our six field lines at
six different points, with each of the six initial points fixed in ~ We again emphasize that there are an infinite number of
time and space for a given field line. These six points arevays to animate electric field line motions for the problem at
indicated by the spheres in Fig. 2. Figut@2hows the field hand. We have shown one way in Fig. 2. Another way would
lines computed in this way when the charge is still out ofbe to start out with the same six points shown in Fi).2
sight on the negative-axis att=0, moving upward. Figure but now let their positions oscillate sinusoidally in the hori-
2(b) shows these “same” field lines when the charge hagzontal direction with some amplitude and frequency. At any
arrived at the origin at=3. instant of time, we cquld t.hen construct the fjeld lines that
Although we have a perfectly well-defined animation of Pass through those six points. This construction would also
the field line motion using this method, the method has man@ive us an animation of the field line motion for these six
undesirable features. To name two, the innermost four fieldi€!d lines which would be continuous and well-behaved.
lines in Fig. 2, which were originally connected to the However, other than the fact that the field lines would be
charges producing the constant field in Figa)2are con- Valid field lines at that instant, the manner in which they
nected to the moving charge at the time shown in Fig).2 €volve has little to do with the physics of the problem.
Moreover, the motion of all of the field lines in the horizontal IIl. DRIET VELOCITIES OF ELECTRIC AND
direction is opposite to the direction of the flow of energy MAGNETIC MONOPOLES
whenever the charge is in motion. A much more satisfying
way to animate the field lines for this problem is outlined in Before we present our preferred method of animation of
Sec. IV. field lines, we first discuss the drifts of electric and magnetic

221 Am. J. Phys., Vol. 71, No. 3, March 2003 J. W. Belcher and S. Olbert 221



monopoles in crossed electric and magnetic fields. This diswe mean that we take the kinetic eneigyd thus the gyro-
cussion will help motivate our definitions of field line motion radii) of the monopoles in a frame moving with the drift
in the following sections. For an electric charge with velocity velocity to be as small as we desire.

v, massm, and electric chargg, the nonrelativistic equation The definition we will use to construct our electric field

of motion in constanE andB fields is line motions in Sec. IV is equivalent to taking the local ve-
q locity of an electric field line in electro-quasi-statics to be the
— drift velocity of low energy test magnetic monopoles spread
—mv=q(E+VvXB). 3 . - -2 S .
dt a( ) @ along that field line. Similarly, the definition we will use to

construct our magnetic field line motions in Sec. V is equiva-

If we define theEXB drift velocity for electric monopoles to  |ant 1o taking the local velocity of a magnetic field line in

be magneto-quasi-statics to be the drift velocity of low energy
EXB test electric charges spread along that field line. These
Vd,E:Fa (4)  choices are thus physically based in terms of test particle
motion and have the advantage that the local motion of the
and make the substitution field lines is in the direction of the Poynting vector.
V=V'+V4, 5

IV. APHYSICALLY-BASED EXAMPLE OF

then Eq.(3) becomegassuminge andB are perpendicular ELECTRIC FIELD LINE MOTION
and constant

We now introduce our preferred way of defining the elec-
Emv’= V' XB 6) tric field line motion in the problem described in Sec. Il. In
dt q ' this section and in Secs. V=VI we concentrate on explaining

. . ._our calculational technique. In Sec. VII, we return to the
The motion of the electric charge thus reduces to a gyratio,estion of the physical motivation for our choice of anima-
about the magnetic field line superimposed on the stead

: L . . : on algorithms.
drift velocity given by Eq.(4). This expression for the drift  rjrgt ' \e need to calculate the time-dependent electric and

velocity is only physically meaningful if the right-hand side \,5gnetic fields for this problem in the electro-quasi-static

is less than the speed of light. This assumption is equivaleni,roximation, assuming nonrelativistic motion. By electro-
to the requirement that the energy density in the electric fiel uasi-statics, we imply that there is unbalanced charge, and

be less than that_ in the mag_”etic field. ) also that the system is constrained to a region of Bizeich
For a hypothetical magnetic monopole of veloatymass — ha if T js the characteristic time scale for variations in the

m, and magnetic charggy, the nonrelativistic equation of o ces, thed<cT. By using Ampere’s law including the

motion i displacement current, we can argue on dimensional grounds

d thatcB~DE/cT=(V/c)E, whereV=D/T. With this esti-

&mVZ am(B—VXE/c?). (7) mate ofB, it is straightforward to show that if we neglect
terms of order Y/c)?, then the curl of the electric field is

If we define theEXB drift velocity for magnetic monopoles zero. In this situation, our solution f&(x,t) as a function of

to be time is just a series of electrostatic solutions appropriate to

the source strength and location at any particular time. Thus

V=2 EXB ®) our time-dependent electric field due to the charge in this
d.B EZ problem is given by
and make the substitution analogous to E5), then we re- E )= d X~ Xchargdt) )
cover Eq.(6) with B replaced by- E/c?. That is, the motion chargd 1) = Amreq |X—Xehargd )]

of the hypothetical magnetic monopole reduces to a gyratio . L . .
about the electric field line superimposed on a steady drif .he time-dependent magnetic field in the same approxima-
velocity given by Eq(8). This expression for the drift veloc- lon can be found by using _thg Lorentz t(ansformatlon prop-
ity is only physically meaningful if it is less than the speed of €"ieS Of the electromagnetic fields, and is given by

light. This assumption is equivalent to the requirement that 1

the energy density in the magnetic field be less than that in = B(X,1)= =3 Venagdt) X Echarg X, 1) (10

the electric field. Note that these drift velocities are indepen-

dent of both the charge and the mass of the monopoles. To verify directly that Eq.(10) is the appropriate solution,

In situations wherdE andB are not independent of space simply take the curl of this magnetic field. The total electric
and time, the drift velocities given above are still approxi-field is then the sum of the expression in E§) and the
mate solutions to the full motion of the monopoles as long a®ackground electric field, and the total magnetic field is just
the radius and period of gyration are small compared to thgiven by Eq.(10). Note that the electric and magnetic fields
characteristic length and time scales of the variatio and  are everywhere perpendicular to one another.

B. There are other drift velocities that depend on both the Given these explicit solutions for the electric and magnetic
sign of the charge and the magnitude of its gyroradius, butield, we can calculate at every point in space and time the
these can be made arbitrarily small if the gyroradius of themagnetic monopole drift velocity 4 g(x,t) given in Eq.(8).
monopole is made arbitrarily smafl. The gyroradius de- We call this velocity field the velocity of the time-dependent
pends on the kinetic energy of the charge as seen in a framadectric field lines in electro-quasi-statics. Note that this ve-
moving with the drift velocities. When we say that we arelocity is parallel to the Poynting vector, so that an observed
considering “low energy” test monopoles in what follows, motion of a field line in our animations indicates the direc-
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everywhere tangent to the electric field at that fimEghis
procedure defines a particular field line at that instant of time
t. Now increment the time by a small amoukt. Move the
starting pointxy to a new point at time+ At given by xg

+ At Vg4 (Xo,t). Draw the field line that passes through this
new point at timet+ At. That field line is now the time-
evolved field line at the timé+ At. Using this method, the
two outer field lines in Fig. @ evolve into the two outer
field lines in Fig. 3b). A more elegant way to follow the
evolution of the field lines is to follow contours on which the
value of an electric flux function is constant, and we explain
that method elsewher&.

An immediate question arises as to why this method of
construction yields a valid set of field lines at every instant of
time. What if we had considered at tinha different starting
point X; on the same field line as,? For our method to
make sense, the pointsxo+AtVgyg(Xe,t) and x;
+AtVy g(X1,t) must both lie on the same field line at time
t+At. This is in fact the case, but it is by no means obvious.
We postpone the explanation as to why this is true to Sec.
VIIC.

What are the advantages to the student in viewing this
kind of animation? To answer this question, let us first re-
view how Faraday would have described the downward force
on the charge in Figs. 1 and 3. First, surround the charge by
an imaginary sphere, as in Fig. 1. The field lines piercing the
lower half of the sphere transmit a tension that is parallel to
the field. This is a stress pulling downward on the charge
from below. The field lines draped over the top of the imagi-
nary sphere transmit a pressure perpendicular to themselves.
This is a stress pushing down on the charge from above. The
total effect of these stresses is a net downward force on the
charge. Over the course of the animation the displayed ge-
ometry simply translates upward or downward, so that it is
also obvious from the animation that the force on the charge
Fig. 3. Two frames of a physically-based method for animating field lines!S Cantam in time as well.
for a charge moving in a constant field. We show both a field line represen- Figure 1 also demonstrates how Maxwell would have ex-
tation and a method of representing the electric field in which the directionplained this same situation quantitatively using his stress ten-

of the field at any point i_s indicated by th_e orientation of the correlations inSOI‘. We show the Maxwell stress vectalg= :f-ndA on the
the texture near that point. The texture is color-coded so that black repre- . .
sents low electric field magnitudes and white represents high electric fieldMaginary spherical surface C_entered _On the charge. Because
magnitudes. the stresses vary so greatly in magnitude on the surface of
the sphere, we show in Fig. 1 the proper direction of the
stress vectors, but the stress vectors have a length that is
tion of energy flow at that point. This definition is valid only proportional to the square root of their magnitude, to reduce
when we have a set of discrete sour@esint charges, point the variation in the length of the vectors. The downward
dipoles, eto. In other situations, for example, a continuousforce on the charge is due both to a pressure transmitted
charge density, it is not appropriateee Sec. VI ¢ perpendicularly to the electric field over the upper hemi-
We show in Fig. 3 two frames of an animation using thissphere in Fig. 1, and a tension transmitted along the electric
definition of the velocity of electric field lines to animate field over the lower hemisphere in Fig. 1, as veamd Fara-
their motion. In addition to the field line representation, weday) would expect given the overall field configuration.
also show in Fig3 a representation of the electric field in  We now argue that the animation of this scene greatly
which the direction of the field at any point is indicated by enhances Faraday'’s interpretation of the static image in Fig.
the orientation of texture correlations near that point. Thisy, First of all, as the charge moves upward, it is apparent in
latler representation of the field structure is the line integrathe animation that the electric field lines are generally com-
convolution technique of Cabral and Leed&hSundqui pressed above the charge and stretched below the cfiarge.
has devised a novel way to animate such textures using thehis changing field configuration makes it intuitively plau-
definitions of field motion contained in this paper. That is, sible that the field enables the transmission of a downward
the texture pattern in Fig. 3 evolves in time according to Eqforce to the moving charge we see as well as an upward force
(8).% to the charges that produce the constant field, which we can-
This animation is constructed in the following way. not see. That is, it makes plausible the stress analysis of Fig.

(b)

Choose any point in spacg at a given timet, and draw an
electric field line through that point in the usual fashidor
example, construct the line that passes throughand is
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know physically that as the particle moves upward, there is a
continual transfer of energy from the kinetic energy of the
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particle to the electrostatic energy of the total field. This is a
difficult point to argue at an introductory level. However, it
is easy to argue in the context of the animation, as follows.

The overall appearance of the upward motion of the
charge through the electric field is that of a point being
forced into a resisting medium, with stresses arising in that
medium as a result of that encroachment. Thus it is plausible
to argue based on the animation that the energy of the up-
wardly moving charge is decreasing as more and more en-
ergy is stored in the compressed electrostatic field, and con-
versely when the charge is moving downward. Moreover,
because the field line motion in the animation is in the direc-
tion of the Poynting vector, we can explicitly see the electro-
magnetic energy flow away from the immediate vicinity of
the z-axis into the surrounding field when the charge is slow-
ing. Conversely, we see the electromagnetic energy flows
back toward the immediate vicinity of theaxis from the
surrounding field when the charge is accelerating back down
the z-axis. All of these features make viewing the animation
a much more informative experience than viewing a single
static image.

V. AN EXAMPLE OF MAGNETIC FIELD LINE
MOTION

Let us turn from electro-quasi-statics to a magneto-quasi-
static example. By magneto-quasi-statics, we assume that
there is no unbalanced electric charge, and that the system is
constrained to a region of siZ@ such that ifT is the char-
acteristic time scale for variations in the sources, tien
<cT. Then using Faraday’s law, we can argue on dimen-
sional grounds thaE~DB/T=VB, whereV=D/T. By us-
ing Ampere’s law including the displacement current, it is ()
straightforward to show that if we neglect terms of OrderFig. 4. Two frames from an example of a physically-based method of ani-

2 .
(V/c)%, then we can neglect the displacement current, anghating magnetic field lines for a conducting ring falling in the magnetic

the B field is determined by field of a permanent magnet. The spheres in the ring in the animation give
the sense and the relative strength of the eddy current in the ring as it falls
VXB(X,t)=uoJ(X,1). (1D and rises.

That is, as time increases our solution B(X,t) as a func-
tion of time is just a series of magneto-static solutions ap-
propriate to the source strength at any particular time. Thelistance of about above the ring, its acceleration slows
electric field is then derived from this magnetic field usingbecause of the increasing current in the ring. As the current
Faraday’s law. increases, energy is stored in the magnetic field, and when
Now consider a particular situation. A permanent magnethe ring comes to rest, all of the initial gravitational potential
is fixed at the origin with its dipole moment pointing upward. of the ring is stored in the magnetic field. That magnetic
On thez-axis above the magnet, we have a co-axial, conductenergy is then returned to the ring as it “bounces” and re-
ing, nonmagnetic ring with radiug inductancel, and resis-  turns to its original position a distanceZbove the magnet.
tanceR [see Fig. 4a)]. The center of the conducting ring is Because there is no dissipation in the system for our particu-
constrained to move along the vertical axis. The ring is re{ar choice ofR in this example, this motion repeats indefi-
leased from rest at=0 and falls under gravity toward the nitely.
stationary magnet. Eddy currents arise in the ring because of How do we compute the time evolution of the magnetic
the changing magnetic flux as the ring falls toward the magfield lines in this situation? As before, we first find the total
net, and the sense of these currents is to repel the ring.  electric and magnetic fields for this problem. In the rest
This physical situation can be formulated mathematicallyframe of the ring, the magnetic field of the ring can be de-
in terms of three coupled ordinary differential equations forrived from the vector potentia(x,t).*° The electric field of
the positionX,o(t) of the ring, its velocityV ,4(t), and the  the ring in its rest frame is given by the negative of the
currentl(t) in the ring?® We consider here the particular partial time derivative of\(x,t). We then calculate the elec-
situation where the resistance of the righich in our tric field in the rest frame of the laboratory using the Lorentz
model can have any valués identically zero, and the mass transformation properties of the electric fidlidr example,
of the ring is small enougtor the field of the magnet is large we use the equation analogous to Et0)]. The magnetic
enough so that the ring levitates above the magnet. We lefield in the laboratory is just the sum of the magnetic field of
the ring begin at rest a distanca 2bove the magnet. The the magnet and the magnet field of the ring in its rest frame
ring begins to fall under gravity. When the ring reaches a(assuming nonrelativistic motignGiven these explicit solu-
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tions for the total electric and magnetic field, we can now
calculate for all space and time the electric monopole drift
velocity V4 g(X,t) given in Eq.(4). This is the velocity field
we call the velocity of the time-dependent magnetic field
lines in magneto-quasi-statics. Note again that this velocity is
parallel to the Poynting vector, so that the observed motion
in our animations indicates the direction of energy flow at
that point.

We show in Fig. 4 two frames of an animation using this
definition of the velocity of magnetic field lines to animate
the motion. The animation is constructed in the same manner §
as that described for Fig. 3, except that we use(Exfor the
velocity field. There are two zeroes in the total magnetic field
when the ring is in motior{see Fig. 4b)]. These zeroes
appear just above the ring at the two places where the field
configuration looks locally like an “X” tilted at about a 45
degree angle', Vvery near, these two zeroes, our assumpt!giﬁg. 5. One frame of an animation of the electric field lines around a time-
thatE<cB is violated, which means that our magneto'quas"varying electric dipole. The frame shows the near zone, the intermediate
static equation approximation is no longer valid. However, itzone, and the far zone.
can be show# that the region where the drift velocity is
very large, and thus where our magneto-quasi-static approxi-
mation is invalid, is a region that for all practical purposes isbeen treated elsewhete®! but without explicit reference to
vanishingly small. Similar considerations apply to electro-the connection between field line motion and the direction of
quasi-statics. the Poynting vector.

What are the advantages to the student of presenting this Consider an electric dipole whose dipole moment varies in
kind of animation? One advantage is again the reinforcemeritme according to
of Faraday’s insight into the connection between shape and _ 5
dynamics. As the ring moves downward, it is apparent in the P()=po(1+0.1 cod2t/T))z (12
animation that the magnetic field lines are generally com-The solutions for the electric and magnetic fields in this situ-
pressed below the ring. This makes it intuitively plausibleation in the near, intermediate, and far zone are commonly
that the compressed field enables the transmission of an upguoted, and will not be given here. We take those fields and
ward force to the moving ring as well as a downward force touse Eq.(8) to calculate the electric field line velocity in this
the magnet. Moreover, we know physically that as the ringsituation. Figure 5 shows one frame of an animation of these
moves downward, there is a continual transfer of energyields.
from the kinetic energy of the ring to the magnetostatic en- Close to the dipole, the field line motion and thus the
ergy of the total field. This point is difficult to argue at an Poynting vector is first outward and then inward, correspond-
introductory level. However, it is easy to argue in the contexting to energy flow outward as the quasi-static dipolar electric
of the animation, as follows. field energy is being built up, and energy flow inward as the

The overall appearance of the downward motion of thequasi-static dipole electric field energy is being destroyed.
ring through the magnetic field is that of a ring being forcedThis behavior is related to the “casual surface” discussed
downward into a resisting physical medium, with stresseslsewhere! Even though the energy flow direction changes
that develop due to this encroachment. Thus it is plausible tsign in these regions, there is still a small time-averaged
argue based on the animation that the energy of the dowrenergy flow outward. This small energy flow outward repre-
wardly moving ring is decreasing as more and more energgents the small amount of energy radiated away to infinity.
is stored in the magnetostatic field, and conversely when th&he outer field lines detach from the dipole and move off to
ring is rising. Moreover, because the field line motion is ininfinity. Outside of the point at which they neck off, the
the direction of the Poynting vector, we can explicitly seevelocity of the field lines, and thus the direction of the elec-
electromagnetic energy flowing away from the immediatetromagnetic energy flow, is always outward. This is the re-
vicinity of the ring into the surrounding field when the ring is gion dominated by radiation fields, which consistently carry
falling and flowing back out of the surrounding field toward energy outward to infinity.
the immediate vicinity of the ring when it is rising. All of
these features make watching the animation a much morg||. THE PHYSICAL MOTIVATION EOR OUR
informative experience than viewing any single image of thispegNITIONS

situation.
A. Thought experiments in magneto-quasi-statics
To understand more fully what our animation procedures
mean physically, consider a few simple situations. If we hold
VI. AN EXAMPLE OF MOVING FIELD LINES IN a magnet in our hand and move it at constant speed, do the
DIPOLE RADIATION field lines move with the magnet? Most readers would agree

that the familiar dipole field line pattern should move with
Before turning to a physical justification of our choices for the magnet, and it is easy to see how to calculate this
defining motion of the electromagnetic field, we consider onenotion—we simple translate the familiar static dipolar field
final example of field line animation, this time in a situation lines along with the magnet. But consider a more compli-
that is not quasi-static. Some of what we discuss here hasated situation. Suppose we have a stationary solenoid that
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carries a current that is increasing with time. At any instantcapacitor plates should move with their source, for example,
we can easily draw the magnetic field lines of the solenoidwith the capacitor on the cart. How do we make this intuition
However, in contrast to the moving magnet case, there iguantitative? We realize that in the laboratory frame there
now no intuitively obvious way to follow the motion of a will be a “motional” magnetic fieldB=VXE/c2. We then

given field line from one instant of time to the next. imagine placing a hypothetical low energy test magnetic

The use of the motion of low-energy test electric chargesmonopole in the electric field of the capacitor. The monopole
however, offers a plausible way to define this motion. Bywill gyrate about the electric field and the center of gyration
“test” we mean electric charges whose charge is vanishinglywill move in the laboratory frame because it drifts in the
small, and that therefore do not modify the original currenty XE/c? magnetic field. Th&€XB magnetic monopole drift
distribution or affeCt eaCh Other. To see hOW to appl’oach th@e'ocny is given by Eq(s) An EXB magnetic d”ft Ve|ocity
concept of field line motion using test electric charges, W&y this” motional magnetic field is just. That is, the test
first return to the case of translatlonal motion, but cor_1$|der @nagnetic monopole “hugs” the “moving” electric field line,
moving solenoid instead of a moving magnet. Consider thenoying at the velocity our intuition expects. The drift motion
following thought experiment. We have a solenoid carrying &t this low energy test magnetic monopole constitutes one
constant current provided by a battery. The axis of the soleyay to define the motion of the electric field line. This mo-
noid is vertical. We place the entire apparatus on a cart, angon is not unique, but is physically motivated. As above, it
move the cart horizontally at a constant velodityas seen in - 159 has the advantage that this motion is in the direction of
the laboratory frame\(<c). the local Poynting vector.

As above, our intuition is that the magnetic field lines In the more genera| Cas(éor examp|e' two sources of
associated with the currents in the solenoid should movelectric field moving at two different velocities, or sources
with their source, for example, with the solenoid on the cartihich vary in time, we choose the motion of an electric
How do we make this intuition quantitative in this case?field line to have the same physical basis as above. That is,
First, we realize that in the laboratory frame there will be athe electric field line motion is the motion we would observe
“motional” electric field E= —VXB, even though there is for hypothetical low energy test magnetic monopoles ini-
zero electric field in the rest frame of the solenoid. Now,tially spread along the given electric field line, drifting in the
given the existence of this laboratory electric field, imaginemagnetic field that is associated with the electric field and
placing a low-energy test electric charge in the center of thehe moving charges.
moving solenoid. The charge will gyrate about the magnetic Finally, consider the animation of the electric field lines in
field and the center of gyration will move in the laboratory electric dipole radiation that we presented in Sec. VI. In this
frame because it drifts in the-VXB electric field with a  situation our definition of the motion of field lines using Eq.
drift velocity is given by Eq.(4). An EXB electric drift ~ (8) no longer permits a physical interpretation in terms of
velocity in the—V XB electric field is jus\V. That is, the test monopole drifts, as our “drift” speeds so defined can exceed
electric charge “hugs” the “moving” field line, moving at the speed of light in regions that are not vanishingly small.
the velocity our intuition expects. The drift motion of this Even though this velocity is no longer physical in such re-
low energy test charge constitutes a convenient way to defingions(that is, corresponding to monopole drift motigrisis
the motion of the field line. This definition has the advantagestill in the direction of the local Poynting vector. Thus the
that this motion is in the direction of the local Poynting animation of the motion using E¢8) shows both the field
vector. In the more general cagier example, a stationary line co.nﬂgl_Jratlon at any instant of time, and _|nd|cates the
solenoid with current increasing with time, or two sources oflocal direction of electromagnetic energy flow in the system
magnetic field moving at two different velocitlesve simply ~ as time progresses. For this reason, even in non-quasi-static
extend this concept. That is, we define field line motion to besituations, animation of the field is useful, even if no longer
the motion that we would observe for hypothetical low- Physically interpretable in terms of the drift motions of test
energy test electric charges initially spread along the givefinonopoles.
magnetic field line, drifting in the electric field that is asso-
ciated with the time changing magnetic field. This is the
definition of motion that we have used above. C. Why are monooole drift velocities so special in

Let us now return to the original case of the stationary I. ¢ y i P) P
solenoid with a current varying in time. We can find a soly-Electromagnetismr

tion for B that is the curl of a time-varying vector potential  \ye now return to the question of why the method of con-
A. Then our electric fieldE is simply given by the time qy,ction of moving field lines described in Sec. IV yields a
derivative of this vector potential, and we can calculate the,5jig set of field lines at every instant of time. For any gen-
velocity of a given field line directly by using E@4). Thus o0 yector fieldW(X, 1), the time rate of change of the flux
gcselgﬁﬁléer%’ori\:)en tiwr?\;ﬁisfoclg;de(aonumqué way to calculate of that field through an open surfaBoounded by a contour

) C that moves with velocity(X,t) is given by

B. Thought experiments in electro-quasi-statics d W
) ) ) —fW-dAzJ—-dAJrJ(V-W)v-dA
Now we turn to electro-quasi-statics. Consider the follow- dtJs s dt s

ing thought experiment. We have a charged capacitor con-

sisting of two circular, coaxial conducting metal plates. The — #; (VXW)-dl. (13
common axis of the plates is vertical. We place the capacitor c

on a cart, and move the cart horizontally at a constant veloc-

ity V as seen in the laboratory framé<c). Our intuition is  If we apply Eq.(13) to E(X,t) in regions where there are no
that the electric field lines associated with the charges on theources and us€-E=0 andJE/dt=c?V X B, we have
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E andB fields are mutually perpendicular, and that can be
gt SE'dAZCZ 3€C(B—VXE/02)'C“- (14 identified with physically meaningful quantities in appropri-
ate limits.

Now we specialize to those configurations of electric, !N Situations that are not quasi-static, for example, dipole
magnetic, and velocity fields that preserve the electric fluxradiation, the velocities of field lines calculated according to
that is for which the left-hand side of E¢L4) is zero, and he above prescriptions are not physical. That is, they do not
thus for which the right-hand side of E¢L4) is also zero. correspond to the drift motions of low-energy test mono-
Because the surfac8 and its contour are arbitrarjother ~ Poles. For example, in some regions of nontrivial extent,
than the requirement that they not sweep over sources fi€Se velocities exceed the speed of light. Even so, the ani-
electric field, we must have the integrand on the right-handmation of field line motion using these definitions is infor-
side be zero as well in those regions. Note that because tHBative. Such animations provide both the field line configu-
integrand is zero, we are implicitly assuming that the electrid@tion at any instant of time, and the local direction of
field is perpendicular to the magnetic field at all points in€/€ctromagnetic energy flow in the system as time
space. This requirement is satisfied for all of the example8rogresses. Such a visual representation is useful in under-
we considered above. We further assume that the velocityi@nding the energy flows during electric dipole radiation, or
field is everywhere perpendicular ®. This restriction is " the creation and destruction of electric fields. ,
reasonable because there is no meaning to the motion of a !N conclusion, we return to the question of the pedagogical
field line parallel to itself. Then the requirement that theUS€fulness of such animations. Emphasizing the shape of

integrand be zero leads to our equation for magnetic mondield lines and their dynamical effects in instruction under-
pole drift, Eq.(8). scores the fact that electromagnetic forces between charges

Thus the velocity field defined by our magnetic monopoleand currents arise due to stresses transmitted by the fields in
drifts preserves electric flux in source free regions. In parihe space surrounding them, and not magically by “action at
ticular, if we define the open surfaat timet to be such & Q|stance with no need fqr an intervening mechanism. For .
that the electric fieldE is everywhere perpendicular to its thiS reason, our approach is advocated as a useful pedagogi-
surface normal, then the electric flux through that surface i§2! approach to teaching electromagnetfsithis approach
zero at timet. If we let that surface evolve according to the @llows the student to construct conceptual models of how
velocity field in Eq.(8), then Eq.(14) guarantees that the electromagnetic fields mediate the interactions of the charged
electric flux continues to remain zero. Note that the surfac@Pi€cts that generate them, by basing that conceptual under-
does not have to be infinitesimally small for this argument toSt&nding on simple analogies to strings and ropes.

hold, because the velocity(x,t) varies at every point around . ©Ur further contention is that animation greatly enhances
the contour according the local values Bfand B on the the student’s ability to perceive this connection between

contour, in such a way that the integrand on the right-han hape and dynamical effects. This is because animation al-

side of Eq.(14) is zero. Thus theE field continues to be ows the student to gain additional insight into the way in
locally tangent to the surface as it evolves which fields transmit stress, by observing how the motions of

We can now argue that our method of constructing electrid@t€rial objects evolve in time in response to the stresses
field lines in Sec. IV using Eq8) yields a valid set of field QSSOC'at_ed with those fields. Moreover! watching t_he evolu-
lines at every instant of time, as follows. For our surface atlon of _f|eld stru_cture_s(fqr exqmple, thelr_ compression and
time t. take the field line join’ing the points, andx, dis- stretching provides |n_S|ght into how f|eld.s transmit t_he
cussed in Sec. IV, extended an infinitesimal amount perpen];—?r g:?r? ttr?st dti?eeg/tigr?o?lphaellyﬁot;/?wctﬁwlgsse%l{l(r)rﬂi\lgirlrllgltaiorr?gt;aorr(f
dicular to itself in the local direction dB. The electric flux vide insight into the energy exchanges between material ob-

through thi_s surface is Z€ro by const_r uct?on. Let th_is Surfac‘fects and the fields they produce. The actual efficacy of these
evolve to timet+At using the velocity field described by 3 ninations when used in instruction is the subject of an on-

Eq. (8). Equation(14)_guarantees that the flux through this going investigatiorf, which will be reported elsewhere.
evolved surface at timé+ At remains zero, and thus the

electric field is still everywhere tangent to that surface. This
means that the pointsxg+At Vgg(X,t) and x;
+At Vg g(x;,t) discussed in Sec. IV still lie on the same ACKNOWLEDGMENTS
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