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The Falling Magnet 

 
Consider the situation in which a permanent magnet is located on the vertical axis of a 

stationary, conducting, non-magnetic ring, and is constrained to move along that axis.  The 
magnetic dipole moment of the magnet is also constrained to be vertical, parallel to the axis of 
the ring.   The magnet is released from rest at t = 0, and falls under gravity toward the 
conducting ring.  Eddy currents arise in the ring because of the changing magnetic flux as the 
magnet falls toward the ring, and the sense of these currents will be such as to repel the magnet 
from below.  After the magnet passes through the ring, the eddy currents will reverse direction, 
now attracting the magnet from above.  We formulate the dynamics of the problem.   

Let our magnet have dipole moment .  Suppose the circular ring has radius a, 
resistance R, and inductance L.  The equation of motion of the magnet is  
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where Bz is the field due the current I in the ring, positive in counterclockwise direction as 
viewed from above.  The expression for Bz is 

Bz =
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so that equation (1) is  
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Ohm’s Law and Faraday's Law applied to the ring give 
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To determine the magnetic flux through the ring due to the dipole field , we calculate the flux 
through a spherical cap of radius a2 + z2  with an opening angle given θ given by 
sinθ = a / a2 + z2  (this is the same as the flux through the ring because ∇⋅ ).  The flux 
through a spherical cap only involves the radial component of the dipole field, and our 
expression for the flux is easily seen to be  
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Inserting (5) into (4) yields 
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Equations (3) and (6) are the coupled ordinary differential equations which determine the 

dynamics of the situation.  If we multiply (3) by v =
dz
dt

 and (6) by I, after some algebra, we 

find that 
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This equation expresses the conservation of energy for the falling magnet plus the magnetic 
field of the ring.   
 We now put these equations into dimensionless form.  We measure all distances in 
terms of the distance a, and all times in terms of the time a / g .  Let  
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The time a / g  is roughly the time it would take the magnet to fall under the influence of 
gravity through a distance a starting from rest.  The current  is roughly the current in the 
ring that is required to produce a force sufficient to offset gravity when the magnet is a 
distance a above the ring.  We introduce the three dimensionless parameters 
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Note that we can write the reference current  in terms of these parameters as oI
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The parameters have the following physical meanings.  The quantity α is the ratio of the free 
fall time to the inductive time constant.  If α is very large, inductive effects are negligible.  The 
quantity β is roughly the ratio of the current due to induction alone to the reference current Io, 
in the case that the resistance is zero.  The quantity λ is the ratio of the inductance of the ring 
to its minimum possible value, aoµ .  If we define the speed ′ v = d ′ z / d ′ , then we can write 
three coupled first-order ordinary differential equations for the triplet (

t 
,z ), Iv ′′′ , as 
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We show a numerical solution to these equations in Figure 1.  The initial conditions 
 for this solution plotted are (2,0,0), and the values of ),,( Ivz ′′′ ),( βα  are (1,32).  In Figure 1 

we plot the position as a function of time and the current as a function of time using our 
dimensionless parameters.  The behavior of these solutions is what we expect.  When the 
magnet reaches a distance of about a above the ring, it slows down because of the increasing 
current in the ring, which repels the magnet.  As the current increases, energy is stored in the 
magnetic field of the ring, and some of that energy is returned to the magnet as it “bounces” 
slightly at about t .  The magnet then starts to fall again.  As it passes through the ring, 
the current reverses direction (with a slight time lag, because of the inductance of the ring), 
now attracting the magnet from above, which again slows the magnet.  Finally the magnet falls 
far enough that the current in the ring becomes small, and the magnet is again in free fall.  For 
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other choices of values of ),( βα (e.g., (0,32)), the magnet will actually levitate above the ring, 
since there is no dissipation in the system when 0=α .   
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Figure 1:  The normalized position z′  of the falling magnet above the ring and the normalized 
current I ′  in the ring as a function of normalized time t′ , for values of the parameters ( ),βα  

equal to (1,32). 
 

 How much freedom do we have in choosing the absolute value of the current once we 
have solved our dimensionless equations, and how does that freedom affect the topology of the 
magnetic field lines?  The absolute current is given by III o ′= (cf. equation (8)). One measure 
of the shape of the total field is the ratio of the field at the center of the ring due to the ring to 
the field at the center of the ring due to the magnet when the magnet is a distance a above the 
ring.  Clearly when this ratio varies the overall shape of the total field must vary.  It can be 
shown using equation (9) that this ratio is to within numerical factors given by λβ/I ′ .   That 
is, the overall shape of the magnetic field topology is totally determined once we make the one 
remaining choice of the dimensionless constant λ, defined in equation (9), which up to this 
point we have not chosen (we need only pick values of α and β to solve our dimensionless 
equations).  Once that choice is made, we have no additional freedom to affect the field 
topology.  In all of the subsequent calculations, we have chosen λ to be 2, which is the smallest 
value that is physically reasonable.   

 
Finally, the treatment above refers to a falling magnet and a stationary ring, but all the 

dynamics are the same for a falling ring and a stationary magnet, since it is only the relative 
velocity of the two that affects the dynamics.  The falling ring animations use the same set of 
equations as the falling magnetic animations.   
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