Waves

Roger Ramjet/www.surfcam.com
Apr 292005

Reminder on waves

At a moment in time:

At a point in space:

Wave properties

- What do we want to know about waves:
- Speed of propagation?
- Transverse or longitudinal oscillation?
- What is oscillating?
- What are typical frequencies/wavelengths?
- Speed of propagation: v = $\quad \mathrm{f}$
- How can we derive a wave equation from Maxwells equations?

Back to Maxwell's equation

- Wave equation is differential equation
- M.E. (so far) describe integrals of fields
$\oint_{A_{\text {closed }}} \vec{E} \cdot d \vec{A}=\frac{Q_{\text {encl }}}{\epsilon_{0}}$
$\oint_{L_{\text {closed }}} \vec{E} \cdot d \vec{l}=-\frac{d \Phi_{B}}{d t}$
$\oint_{A_{\text {closed }}} \vec{B} \cdot d \vec{A}=0$
$\oint_{L_{\text {closed }}} \vec{B} \cdot d \vec{l}=\mu_{0} I_{\text {encl }}+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}$

Transform into

$$
\begin{aligned}
& \int_{V(A)} \overbrace{\vec{\nabla} \cdot \vec{F} d V}^{\text {Flux/Unit Volume }}=\oint_{A} \vec{F} \cdot d \vec{A}=\Phi_{F} \\
& \text { Divergence } \rightarrow \vec{\nabla} \cdot \vec{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}
\end{aligned}
$$

Gauss Theorem

 differential equ's
Stokes Theorem

Apr 292005

Differential Form of M.E.

Differential Form of M.E.

- Q: Do we need ρ and ${ }^{\mathrm{j}}$ to understand E.M. waves?

Differential Form of M.E.

- Q: Do we need ρ and ${ }^{\text {j }}$ to understand E.M. waves?
- A: No! Light travels from sun to earth, i.e. in vacuum (no charge, no current)!
- There's no 'medium' involved!?
- unlike waves on water or sound waves

Maxwell's Equations in Vacuum

- Look at Maxwell's Equations without charges, currents

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{E} & =0 \\
\vec{\nabla} \cdot \vec{B} & =0 \\
\vec{\nabla} \times \vec{E} & =-\frac{\partial \vec{B}}{\partial t} \quad \text { Now completely symmetric! } \\
\vec{\nabla} \times \vec{B} & =\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

I. $\vec{\nabla} \cdot \vec{E}=0$
II. $\vec{\nabla} \cdot \vec{B}=0$
III. $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
VI. $\vec{\nabla} \times \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}$

Solve for a simple geometry

$$
\frac{\partial}{\partial y}=0
$$

Maxwell's Equations in Vacuum

I. $\vec{\nabla} \cdot \vec{E}=0$
II. $\vec{\nabla} \cdot \vec{B}=0$
III. $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
VI. $\vec{\nabla} \times \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}$

Solve for a simple geometry

Allow variations only in z-direction: $\quad \frac{\partial}{\partial x}=0$

$$
\frac{\partial}{\partial y}=0
$$

Electromagnetic Waves

- We found wave equations:

E and B are oscillating!

Plane waves

- Example solution: Plane waves

$$
\begin{aligned}
E_{y} & =E_{0} \cos (k z-\omega t) \\
B_{x} & =B_{0} \cos (k z-\omega t) \\
\text { with } k & =\frac{2 \pi}{\lambda}, \omega=2 \pi f \text { and } f \lambda=c .
\end{aligned}
$$

- We can express other functions as linear combinations of sin,cos
- 'White' light is combination of waves of different frequency
- Demo...

Plane waves

- Example solution: Plane waves

$$
\begin{aligned}
& E_{y}=E_{0} \cos (k z-\omega t) \\
& B_{x}=B_{0} \cos (k z-\omega t) \\
& \text { with } k=\frac{2 \pi}{\lambda}, \omega=2 \pi f \text { and } f \lambda=c . \\
& \text { Check } \\
& \frac{\partial^{2} B_{y}}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} B_{y}}{\partial t^{2}} \\
& \frac{\partial^{2} E_{y}}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} E_{y}}{\partial t^{2}}
\end{aligned}
$$

Plane waves

$$
\frac{\partial^{2} B_{y}}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} B_{y}}{\partial t^{2}}
$$

$$
\frac{\partial^{2} E_{y}}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} E_{y}}{\partial t^{2}}
$$

$\frac{\partial^{2} E_{y}}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} E_{y}}{\partial t^{2}}$

Apr 292005
列

Plane waves

- Example solution: Plane waves $\frac{\partial B_{x}}{\partial z}=\frac{1}{c^{2}} \frac{\partial E_{y}}{\partial t}$

E.M. Wave Summary

- $\vec{E} \perp \vec{B}$ and perpendicular to direction of propagation
- Transverse waves
- Speed of propagation $v=c=\lambda f$
- $|\vec{E}| /|\vec{B}|=c$
- E.M. waves travel without medium

