Waves

nogel namjeg minourieu.

Apr 29 2005

web.mit.edu/8.02x/www

Reminder on waves

Wave Equation

• Wave equation:

$$\frac{\partial^2 D(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 D(x,t)}{\partial t^2}$$
 Couples variation in time and space

- Speed of propagation: $v = \lambda f$
- How can we derive a wave equation from Maxwells equations?

Apr 29 2005

web.mit.edu/8.02x/www

Wave properties

- What do we want to know about waves:
 - Speed of propagation?
 - Transverse or longitudinal oscillation?
 - What is oscillating?
 - What are typical frequencies/wavelengths?

Apr 29 2005

web.mit.edu/8.02x/www

Back to Maxwell's equation

- Wave equation is differential equation
- M.E. (so far) describe integrals of fields

Gauss Theorem

Flux/Unit Volume

$$\int_{V(A)} \vec{\nabla} \cdot \vec{F} dV = \oint_{A} \vec{F} \cdot d\vec{A} = \Phi_{F}$$
Divergence $\rightarrow \vec{\nabla} \cdot \vec{F} = \frac{\partial F_{x}}{\partial x} + \frac{\partial F_{y}}{\partial y} + \frac{\partial F_{z}}{\partial z}$

Apr 29 2005

web.mit.edu/8.02x/www

Stokes Theorem

web.mit.edu/8.02x/www

Differential Form of M.E.

Differential Form of M.E.

Apr 29 2005

Differential Form of M.E.

• Q: Do we need ρ and \overline{j} to understand E.M. waves?

Apr 29 2005 web.mit.edu/8.02x/www

Differential Form of M.E.

- Q: Do we need ρ and \overline{j} to understand E.M. waves?
- A: No! Light travels from sun to earth, i.e. in vacuum (no charge, no current)!
- There's no 'medium' involved!? – unlike waves on water or sound waves

Maxwell's Equations in Vacuum

 Look at Maxwell's Equations without charges, currents

$$\vec{\nabla} \cdot \vec{E} = 0$$
$$\vec{\nabla} \cdot \vec{B} = 0$$
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\vec{\nabla} \times \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

Now completely symmetric!

web.mit.edu/8.02x/www

Apr 29 2005

web.mit.edu/8.02x/www

Maxwell's Equations in Vacuum

Illustration

Maxwell's Equations in Vacuum

Electromagnetic Waves

• Note: (E_x, B_y) and (E_y, B_x) independent:

Electromagnetic Waves

• We found wave equations:

E and B are oscillating!

Apr 29 2005

web.mit.edu/8.02x/www

Electromagnetic Waves

Apr 29 2005

web.mit.edu/8.02x/www

Plane waves

• Example solution: Plane waves

$$E_y = E_0 \cos(kz - \omega t)$$

$$B_x = B_0 \cos(kz - \omega t)$$

with $k = \frac{2\pi}{\lambda}, \omega = 2\pi f$ and $f\lambda = c$.

- We can express other functions as linear combinations of sin,cos
 - 'White' light is combination of waves of different frequency
 - Demo...

Apr 29 2005 web.mit.edu/8.02x/www

Plane waves

• Example solution: Plane waves

$$E_{y} = E_{0}\cos(kz - \omega t)$$

$$B_{x} = B_{0}\cos(kz - \omega t)$$
with $k = \frac{2\pi}{\lambda}, \omega = 2\pi f$ and $f\lambda = c$.
$$\boxed{\text{Check}}$$

$$\frac{\partial^{2}B_{y}}{\partial z^{2}} = \frac{1}{c^{2}}\frac{\partial^{2}B_{y}}{\partial t^{2}}$$

$$\frac{\partial^{2}E_{y}}{\partial z^{2}} = \frac{1}{c^{2}}\frac{\partial^{2}E_{y}}{\partial t^{2}}$$
web.mit.cdu/8.021/www

Plane waves

E.M. Wave Summary

- E <u>B</u> and perpendicular to direction of propagation
- Transverse waves
- Speed of propagation $v = c = \lambda f$
- |E|/|B| = c
- E.M. waves travel without medium

Apr 29 2005 web.mit.edu/8.02x/www