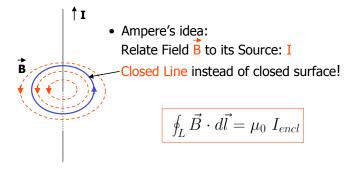
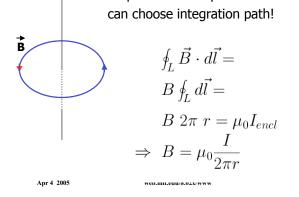
News


- Quiz #3 next Mon, 4/11, 10AM
- Exp MF, Pset 8 due Fri, 4/8
- Review in class, Fri, 4/8 10AM
- No evening review

Apr 4 2005

†I

• Tutoring session, Sun, 3-8PM


Ampere's Law

web.mit.edu/8.02x/www

Ampere's Law Ampere's Law helps because we

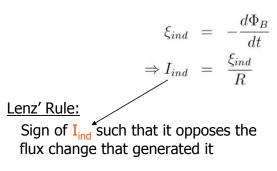
web.mit.edu/8.02x/www

Faradays Law

 $\Phi_B = \int_A \vec{B} \cdot d\vec{A}$

Magnetic Flux (usually, A not closed surface)

ξ_{ind}	=	$-\frac{d\Phi_B}{dt}$
$\Rightarrow I_{ind}$	=	$rac{\xi_{ind}}{R}$


Faradays Law

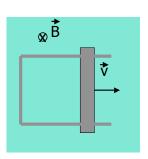
Apr 4 2005

Apr 4 2005

web.mit.edu/8.02x/www

Lenz' Rule

Faradays Law


- $\Phi_{\rm B}$ can change because
 - |B| changes
 - Angle between \vec{B} and \vec{A} changes
 - |A| (size of circuit in B) changes

web.mit.edu/8.02x/www

web.mit.edu/8.02x/www

Use of Faradays Law

- To find direction of I_{ind}:
 - Determine $\Phi_{\rm B}$
 - Does $|\Phi_B|$ increase or decrease?
 - \bullet Find sign of I_{ind} using Lenz' rule

Apr 4 2005

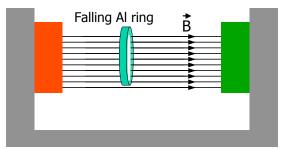
web.mit.edu/8.02x/www

Lenz' Rule

Field of \mathbf{I}_{ind} DOES NOT necessarily oppose Φ_{B}

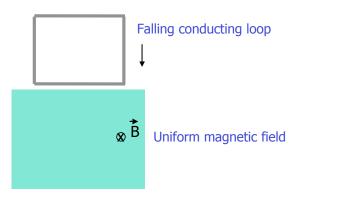
Field of I_{ind} DOES oppose change of $\Phi_B (= d\Phi_B/dt)$

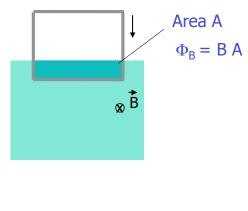
Apr 4 2005


web.mit.edu/8.02x/www

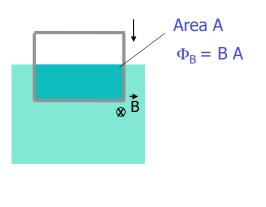
Lenz' Rule redux

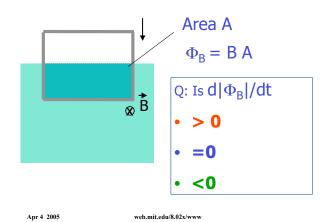
In most cases:


- If $|\Phi_B|$ increases: B(I_{ind}) opposite direction to B_{ext}
- If $|\Phi_B|$ decreases: B(I_{ind}) same direction as B_{ext}


My favorite Demo

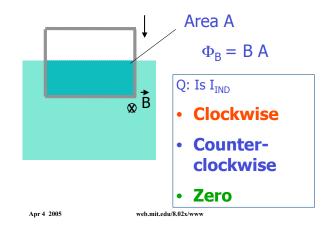
• Falling Al ring is slowed down in B-Field

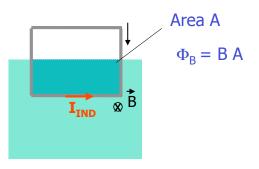

Apr 4 2005	web.mit.edu/8.02x/www	Apr 4 2005	web.mit.edu/8.02x/www

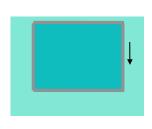


Apr 4 2005

web.mit.edu/8.02x/www

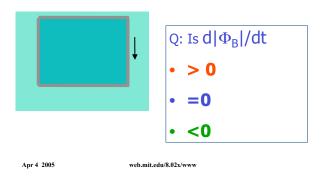


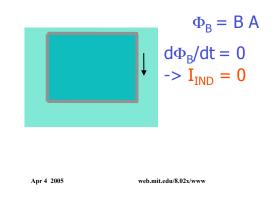


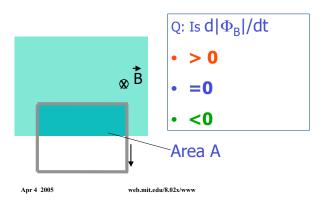


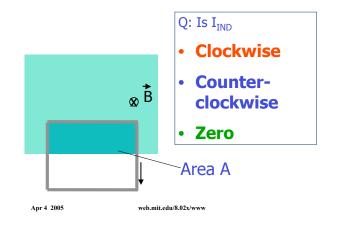
Area A $\Phi_{B} = B A$ $d|\Phi_{B}|/dt = d/dt(B A)$ = B dA/dt

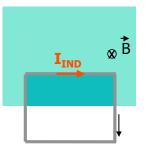
web.mit.edu/8.02x/www

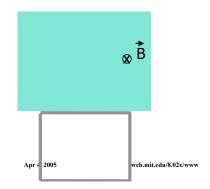







web.mit.edu/8.02x/www


Apr 4 2005



Apr 4 2005

web.mit.edu/8.02x/www

