News

- Quiz #3 next Mon, 4/11, 10AM
- Exp MF, Pset 8 due Fri, 4/8
- Review in class, Fri, 4/8 10AM
- No evening review
- Tutoring session, Sun, 3-8PM, 24-402

Magnetic Induction

- Currents give rise to B-Field
- Q: Can B-Field give rise to current?
- A: Only if Magnetic Flux changes with time!

Apr 6 2005

web.mit.edu/8.02x/www

Apr 6 2005

web.mit.edu/8.02x/www

Faradays Law

$$\Phi_B = \int_A \vec{B} \cdot d\vec{A}$$

Magnetic Flux (usually, A not closed surface)

$$\xi_{ind} = -\frac{d\Phi_B}{dt}$$

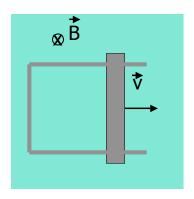
Faradays Law

$$\Rightarrow I_{ind} = \frac{\xi_{ind}}{R}$$

Faradays Law

- Φ_B can change because
 - |B| changes
 - Angle between B and A changes
 - |A| (size of circuit in B) changes

Apr 6 2005 web.mit.edu/8.02x/www Apr 6 2005 web.mit.edu/8.02x/www


Lenz' Rule

$$\xi_{ind} = -\frac{d\Phi_B}{dt}$$

$$\Rightarrow I_{ind} = \frac{\xi_{ind}}{R}$$

 Lenz' Rule:

Sign of I_{ind} such that it opposes the flux change that generated it

Use of Faradays Law

- To find direction of I_{ind}:
 - Determine Φ_{R}
 - \bullet Does $|\Phi_{\rm B}|$ increase or decrease
 - Find sign of I_{ind} using Lenz' rule

Apr 6 2005

web.mit.edu/8.02x/www

Apr 6 2005

web.mit.edu/8.02x/www

Lenz' Rule

Field of I_{ind} DOES NOT necessarily oppose Φ_B

Field of I_{ind} DOES oppose change of Φ_{B} (= $d\Phi_{B}/dt$)

Lenz' Rule redux

In most cases:

- If $|\Phi_{\rm B}|$ increases: B(I $_{\rm ind}$) opposite direction to B $_{\rm ext}$
- If $|\Phi_{\rm B}|$ decreases: B(I $_{\rm ind}$) same direction as B $_{\rm ext}$

Apr 6 2005 web.mit.edu/8.02x/www Apr 6 2005 web.mit.edu/8.02x/www