

Energy stored in Capacitor

$$W_{tot} = \int_{Q_{initial}}^{Q_{final}} V \, dq = \int_{0}^{Q} V \, dq$$
$$= \int_{0}^{Q} q/C \, dq = \frac{1}{C} \int_{0}^{Q} q \, dq$$
$$= \frac{1}{C} \frac{Q^{2}}{2}$$

- Work W = $1/2 Q^2/C = 1/2 C V^2$ needed to charge capacitor
- Energy conserved
- But power can be amplified
 - Charge slowly
 - Discharge very quickly

```
Mar 12 2005
```

web.mit.edu/8.02x/www

Electric Current

- Current **I** = **dQ/dt** has a direction
 - Convention: Direction of flow of positive charges
 - In our circuits, I carried by electrons
- To get a current:
 - Need mobile charges
 - Need |E| > 0 (Potential difference)

web.mit.edu/8.02x/www

Resistivity

- Interplay of scattering and acceleration gives an average velocity vp
- v_D is called 'Drift velocity'
- How fast do the electrons move?
 - Thermal speed is big: $v_{th} \sim 10^6$ m/s
 - Drift velocity is small: $v_D \sim 10^{-3}$ m/s
- All electrons in conductor start to move, as soon as E> 0

Mar 12 2005

web.mit.edu/8.02x/wwv

Resistance

- Define R = V/I : <u>Resistance</u>
- $R = \rho L / A$ for constant cross section A
- R is measured in $\underline{Ohm} [\Omega] = [V/A]$
- Resistivity ρ is property of <u>material</u> (e.g. glass)
- Resistance R is property of <u>specific conductor</u>, depending on material (ρ) and geometry

Mar 12 2005

web.mit.edu/8.02x/www

• Use moving charges to deliver power

Power = Energy/time = dWdt = (dq V)/dt = $dq/dt V = IV = I^2R = V^2/R$

Mar 12 2005

web.mit.edu/8.02x/www

