News

- Quiz \#2: Monday, 3/14, 10AM
- Same procedure as for quiz 1
- Review in class Fri, 3/11
- Evening review, Fri, 3/11, 6-8PM, 54-100
- 2 practice quizzes (+ practice problems)
- Formula sheet

Mar 122005
web.mit.edu/8.02x/www

Charge Density

Demo: Application: Lightning rod Biggest E near pointy tip!

Charge and Potential

Charge and Potential

- For given geometry, Potential and Charge are proportional
- Define
$-Q=C$ V $->C$ is Capacitance
- Measured in [F] = [C/V] : Farad
- C tells us, how easy it is to store charge on it $(V=Q / C)$

Parallel Plate Capacitor

Capacitor

- Def: Two conductors separated by insulator
- Charging capacitor:
- take charge from one of the conductors and put on the other
- separate + and - charges

Energy stored in Capacitor

$$
\begin{aligned}
W_{\text {tot }} & =\int_{Q_{\text {initialal }}}^{Q_{\text {fin }}} V d q=\int_{0}^{Q} V d q \\
& =\int_{0}^{Q} q / C d q=\frac{1}{C} \int_{0}^{Q} q d q \\
& =\frac{1}{C} \frac{Q^{2}}{2}
\end{aligned}
$$

- Work $W=1 / 2 Q^{2} / C=1 / 2 C V^{2}$ needed to charge capacitor
- Energy conserved
- But power can be amplified
- Charge slowly
- Discharge very quickly

Mar 122005
web.mit.edu/8.02x/www

Dielectrics

- Parallel Plate Capacitor:
- $\quad \mathbf{C}=\varepsilon_{0} A / d$
- Ex. $\mathbf{A}=\mathbf{1 m} \mathbf{2} \mathbf{2} \mathbf{d = 0 . 1} \mathbf{m m}$ $->C \sim 0.1 \mu F$

In your toolbox:

- How can one get small capacitors with big capacity?

Where is the energy stored?

- Energy is stored in Electric Field

$$
\begin{aligned}
U_{\text {stored }} & =\frac{1}{2} C V^{2}=\frac{1}{2}\left(\epsilon_{0} \frac{A}{d}\right)(E d)^{2} \\
& =\frac{1}{2} \epsilon_{0} E^{2} \text { Volume }
\end{aligned}
$$

- E^{2} gives Energy Density:
- U/Volume $=1 / 2 e_{o} E^{2}$

Mar 122005
web.mit.edu/8.02x/www

Electric Current

- We left Electrostatics
- Now: Charges can move in steady state
- Electric Current I:
- $\mathrm{I}=\mathrm{dQ} / \mathrm{dt}$
- Net amount of charge moving through conductor per unit time
- Units:
- [I] = C/s = A (Ampere)

Dielectric Constant

- Dielectric reduces field $\mathrm{E}_{0}(\mathrm{~K}>1)$
- $\mathrm{E}=1 / \mathrm{K} \mathrm{E}_{0}$
- Dielectric increases Capacitance
- $C=Q / V=Q /(E d)=K Q /\left(E_{0} d\right)$
- This is how to make small capacitors with large C !

Electric Current

- Current $\mathrm{I}=\mathrm{dQ} / \mathrm{dt}$ has a direction
- Convention: Direction of flow of positive charges
- In our circuits, I carried by electrons
- To get a current:
- Need mobile charges
- Need |E|>0 (Potential difference)

Demo III

Add NaCl : Dissociates into Na^{+}and Cl^{-}
Charge carriers are available -> Current flows ->
Bulb lights up
Mar 122005
web.mit.edu/8.02x/www

Resistivity

- Interplay of scattering and acceleration gives an average velocity VD_{D}
- v_{D} is called 'Drift velocity'
- How fast do the electrons move?
- Thermal speed is big: $v_{\text {th }} \sim 10^{6} \mathrm{~m} / \mathrm{s}$
- Drift velocity is small: $v_{D} \sim 10^{-3} \mathrm{~m} / \mathrm{s}$
- All electrons in conductor start to move, as soon as E> 0

Mar 122005
web.mit.edu/8.02x/www

Ohm's law

$$
\mathrm{V}=\mathrm{RI}
$$

- Conductor is 'Ohmic', if R does not depend on V,I
- For real conductors, that is only approximately true (e.g. $R=R(T)$ and $T=T(I)$)
- Approximation
- valid for resistors in circuits
- not valid for e.g. light bulbs

Resistance

- Define $\mathrm{R}=\mathrm{V} / \mathrm{I}$: $\underline{\text { Resistance }}$
- $R=\rho L / A$ for constant cross section A
- R is measured in Ohm $[\Omega]=[\mathrm{V} / \mathrm{A}]$
- Resistivity ρ is property of material (e.g. glass)
- Resistance R is property of specific conductor, depending on material (ρ) and geometry

Electric Power

- Use moving charges to deliver power

$$
\begin{aligned}
& \text { Power = Energy/time }=\mathrm{dWdt} \\
& =(\mathrm{dq} \mathrm{~V}) / \mathrm{dt} \quad= \\
& \mathrm{dq} / \mathrm{dt} \mathrm{~V}=\underline{\mathrm{IV} \mathrm{~V}}=\mathrm{I}^{2} \mathrm{R}=\mathrm{V}^{2} / \mathrm{R}
\end{aligned}
$$

Electric circuits
Resistor

Source of EMF

Mar 122005
web.mit.edu/8.02x/www

Internal resistance

- Sources of EMF have internal resistance r
- Can't supply infinite power

Electromotive Force EMF

- Def: $\xi=$ Work/unit charge
- ξ is 'Electromotive Force' (EMF)
- Units are [V]

web.mit.edu/8.02x/www

Electric Circuits

Resistors in series

Electric Circuits

Resistors in parallel

$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{V}_{\mathrm{ab}} / \mathrm{R}_{1}+\mathrm{V}_{\mathrm{ab}} / \mathrm{R}_{2}=\mathrm{V}_{\mathrm{ab}} / \mathrm{Req}_{\mathrm{eq}}$
$->\underset{\text { Mar } 122005}{\text { web.mit.edu/8.02x/www }}$

Electric Circuits

- Two capacitors in series
- $\mathbf{V}_{14}=\mathbf{V}_{23}+\mathbf{V}_{56}$
- $\mathbf{Q}=\mathbf{Q}_{1}=\mathbf{Q}_{\mathbf{2}}$

Kirchoff's rules

- Kirchoff's rules allow us to calculate currents for complicated DC circuits
- Main difficulty: Signs!
- Rule for resistors:

$\Delta V=V_{b}-V_{a}=-I R$, if we go in the direction of I (voltage drop!)

Kirchoff's rules

- Junction rule
- Loop rule

At junctions:
$\Sigma \mathrm{I}_{\mathrm{in}}=\Sigma$

Charge conservation

Around closed loops:
$\Sigma \Delta V_{j}=0$
$\Delta \mathrm{V}$ for both EMFs and Voltage-drops

Energy conservation

Mar 122005
web.mit.edu/8.02x/www

Kirchoff's rules

- Kirchoff's rules allow us to calculate currents for complicated DC circuits
- Main difficulty: Signs!
- Rule for EMFs:

$\Delta V=V_{b}-V_{a}=\xi$, if we go in the direction of I

Mar 122005
web.mit.edu/8.02x/www

