8.02X Electricity and Magnetism

Problem Set 7

Issued: Thu, March 24
Due: \quad Mon, April 4, 4PM <- note Date \& Time!
Reading suggestions (from Young \& Freedman)
Mon, 3/28 Magnetic Field, Lorentz Force
Wed,3/30 Source of Magnetic Fields, Law of Biot-Savart
Fri, 4/1 Ampere's Law

Note that the next experiment is EB (Electric Breakdown). The EB questions will be posted in a separate document. The EB experiment will be due on Monday, April 4.

Problem 1 (5 points):
A charged particle is moving through a uniform magnetic field. If an electric field that points in the same direction as the magnetic field is turned on, describe the path the charged particle will take (use a sketch).

Problem 2 (5 points):

Can you set a resting electron into motion with a constant magnetic field? Explain how (or why not).

Problem 3 (10 points):
See drawing: An ion of mass M and charge q is initially at rest at the origin $(x=0)$ at $t=0$. A region of uniform electric field E pointing in the y direction extends from $\mathrm{y}=0$ to $\mathrm{y}=\mathrm{s}$. Above $y=s$, there is a region of magnetic field B , pointing in the z direction.
(a) When and where does the ion first cross the $x-z$ plane located at $y=s$?
(b) What is the ions trajectory in the B-field region? Where does it cross the $\mathrm{x}-\mathrm{z}$ plane at $y=s$ for the second time?
(c) Where does the ion come to rest?

Problem 4 (10 points):

Shown below is the cross section of a long coaxial cable consisting of an inner core with radius r_{0} and an outer shell of radius r_{1}, both centered at $r=0$. The inner core carries a current I going into the paper plane, the outer shell carries the same current I in the opposite direction. Using Ampere's law, find the magnitude of the magnetic field $\mathrm{B}(\mathrm{r})$ in the region $r_{0}<r<r_{1}$ and $r>r_{1}$.

