8.02X Electricity and Magnetism

Quiz \#1

Tuesday, Feb 22 10:05-10:55am Room 26-100

The quiz has four questions. It is a closed book quiz. No calculators are allowed. A letter-size formula sheet can be used, but has to be signed and submitted together with the quiz.

LAST NAME

FIRST NAME

MIT ID\#

RECITATION SECTION

			MARK YOURS
$\operatorname{Rec} 01$	MW11	B. Zeng	
$\operatorname{Rec} 02$	MW12	B. Zeng	
Rec03	MW1	D. Nagaj	
$\operatorname{Rec} 04$	TR11	G. Benedek	
Rec05	TR1	G. Benedek	
$\operatorname{Rec} 06$	TR2	G. Benedek	
$\operatorname{Rec} 07$	TR3	Daniel Nagaj	

Problem \#1	
Problem \#2	
Problem \#3	
Problem \#4	
TOTAL	

Problem 1 (25 points)

Consider the configuration of point charges shown below, with two negative charges $-Q_{0}$ and a positive charge $+Q_{0}$ forming a equilateral triangle (all sides have length d) in the $x-y$ plane.
(a) What is the direction and magnitude of the force on the positive charge $+Q_{0}$ in terms of the given quantities?
(b) What is the direction and magnitude of the electric field at point x_{0} halfway in between the two negative charges?
(c) Now, assume that the two negative charges are fixed in space and that $+Q_{0}$ is freely movable. Describe the motion $+Q_{0}$ would undergo if released from rest from the original position shown below ($2-3$ sentences)

Problem 2 (25 points)

In lecture, you saw that an electrically charged plexiglass rod could be used to attract electrically neutral objects like a balloon made out of conducting foil.
(a) In a few sentences, explain the origin of the force between a charged object like the rod and an electrically neutral conducting object.
(b) Attraction can also be seen between a charged object and electrically neutral insulators. For example, the rod can be used to pick up pieces of confetti. How does this differ from the process described in (a)?

Problem 3 (25 points)

Shown below is the cross-section of a conducting sphere of radius $R / 2$, surrounded by a very thin conducting spherical shell of radius R. The inner sphere carries a charge $+Q_{0}$ and the outer shell carries a charge $-Q_{0}$.
(a) On the figure, indicate the distribution of charge on the inner sphere.
(b) Using Gauss's Law, find the strength of the electric field $E(r)$ as a function of r from $r=0$ to $r>R$, where r is the distance from the center of the sphere. Results without work will not receive credit.
(c) On the figure, show your solution to (b) using field lines

Problem 4 (25 points)

Shown below is the cross-section of two large parallel plates carrying charges $+Q$ (top) and $-Q$ (bottom). Each plate has area A. Vertically between the plates, a small charged particle with charge q and mass m is suspended at $y=d / 2$, i.e. the force of gravity $F_{G}=-m^{*} g$ and the electrostatic force on the particle cancel.
(a) What is the sign of the small particles charge q ?
(b) Determine q in terms of the other quantities given. Neglect fringe effects for the electric field created by the two plates.
(c) Sketch the electric potential energy U_{E} of the charged particle as a function of y from $y=0$ to $y=d$, assuming $U_{E}=$ 0 at $\mathrm{y}=0$.
(d) Sketch the total potential energy U_{T} of the particle as a function of y from $y=0$ to $y=d$.
(e) Sketch the electric potential V between the plates (ignore the charge q) from $y=0$ to $y=d$.

