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FOREWORD

The subject 8.02 makes use of several mathematical tools you may havejust learned in 18.01 (e.g.,
integration in one dimension, linear approximations of functions) and several you may learn shortly
in 18.02 (vector dot products, integration along an arbitrary linein space, integration of vector dot
products, and double integrals). Unfortunately, all but the first of the latter topics will be covered in
18.02 (or later math courses) after they are introduced in 8.02. It is difficult to change the order of
presentation in either subject without doing severe damage to the internal logic and consistency of
the subject itself. Therefore, the 8.02 lecturer normally presents the necessary mathematical tools as
they are needed, and the physics text may also give help in thisregard. This has proven to be
adequate for past generations of students. (This discussion does not apply, of course, to those of
you who have already completed 18.02 or its equivalent.)

This document (prepared for the 8.02 students in previous terms) is an attempt to present the
needed concepts and toolsin asingle and relatively compact unit. The gpproach is not meant to be
rigorous (see 18.02 for this). Instead it appeals to your intuition, for instance, by drawing analogies
to 18.01 materia. (E.g., double integrals can be viewed as a 2—dimensiona analog of the 1—
dimensional 'singl€ integral.). The examples herein also illustrate the physics encountered in the
first few weeks of 8.02.

In 8.02, it is often the physical meaning of mathematics expressions that the student needs; difficult
manipulations (e.g., evaluations of dificult integrals) are rarely encountered. . So, it isimportant
that you at least learn the meaning of a double integral. In other words, can you describe the
meaning of the integral expression in words?

This presentation should be relatively easy going to 18.01 graduates. However, it isalot of material
in acompact form, so some might find it difficult. If so, do not be alarmed; the ideas will be covered
in the physics course as needed. In either case, a single serious reading now and an attempt to do
the few problems should help you when you next encounter these ideas. We suggest strongly that
you work through this review during | AP or during the first week of the course.

A few topics here are areview of 18.01 material. Most of the materia is 18.02 material directly
useful in the early weeks of 8.02. The discussion on triple integrals (pp. 20-21) is not needed until
late in the course. We encourage you to look ahead (or back) in your Math Textbook and Notes
and read about (or review) these topics. Usually this would amount only to a page or two for each
topic.

This document is a supplement to 8.02. It was prepared by HB. Prof. A. Mattuck of the
M athematics department provided helpful comments.

Hale Bradt
January 2001
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SERIES APPROXIMATIONS

Physicists frequently find it useful to smplify a complicated mathematical expression so that it can be
compared directly to another formula or experimenta result. Sometimes this serves as a check on the
correctness of the complicated expression. Often this smplification amounts to finding the value of a
function at alimiting value of the variable, e.g., some function f(y/b) evaluated at |y/b| << 1, wherebisa
constant.

A powerful and useful tool for thisisthe series expansion of an arbitrary function f(x),

f(x) =ag + g X + axx2 +.......
where the coefficients are constants. For x sufficiently small, x=0 or [x| <<1, only thefirst 1 or 2
terms need be retained; the higher order terms are much smaller and may be neglected. A method of

obtaining the coefficients of the first termsis presented in 18.01. The higher order terms may be obtained
with the Taylor series, to be presented in 18.02; we do not need them in 8.02.

We list below afew examplesthat are often useful. We drop the higher order termsin x because they are
negligible for sufficiently small values of x; thus these expressions constitute approximations of the true
functions. Thelist includes the only onesyou are likely to encounter in 8.02. In fact you will encounter
them only once or twice; you will find them quite useful in other courses and labs. To use them, you must
cast your mathematical expression into the given form, e.g., for expression (a) below:

(b—y)™¥3 = b‘1’3{1 +(_)t;ﬂ—1/3 N b‘1’3(1 +L)

limy/b << 1 3

@ Q+xm = 1+ mx +... for x| << 1

(b) sinx =  X+... for x| << 1
() COS X = 1-x22+ ... for x| << 1*
(d) tan x = X +... for x| << 1"
(e In(1+x) = X +... for x| << 1
() =S =~ 14X+ for {| << 1
©) (%) =~ f(0) + f'0) x + [{"(0)/2] 2 +.. for|x| << 1

* Xisanglein radians

In (g), f'(0) and f "(0) are the first and second derivatives of f(x) evaluated at x = 0. Thetermsf(0) + f'(0)
express the fact that the graph of f(x) near x = 0 iswell approximated by itstangent lineat x = 0. All of
these expressions are expansions about x = O; refer to 18.01 notes for expansions about other points.



8.02 Mathematics Supplement

Problem Al: Convince yourself that the above formulae are reasonable in afew cases. For example
calculate (1 + 0.02)~2 by direct multiplication/division and again with (8). Similarly look up or calculate
precise values of sin 3°, cos 3°, and tan 3° and compare to the values obtained from (b), (c), and (d).

Problem A2: Write simplified versions of (22 — ¢2)—9-2 for z<< c and for z>>c.

Problem A3 (optional): Use (g) to derive three of the equations (a) — (f).

INTEGRATION IN E & M (8.02)

INTRODUCTION
In 8.02, "Line Integrals’ and "Double Integrals’ are used before they are covered in 18.02. We make use
primarily of their conceptual meaning and avoid almost entirely the complex computations of the type
you probably associate with 'integration’. Here we present the concepts as they are used in 8.02. As stated
earlier, thisis not intended to be arigorous presentation. Y ou are encouraged to read your Math text for a
more complete explanation.

Y ou should aready be familiar with 1-dimensional "single" integrals. The Line Integral isanatura
generalization of this concept. The Double Integral is another generalization of the Single Integral. We
choose to begin with the Single Integral asareview. In 8.02, the vector dot product is used asthe
integrand of line and double integrals. We therefore include some discussion of this. (Y ou learn about dot
products in the 1st week of 18.02.) Although not required until very late in 8.02, we conclude with a bit
about "Triple Integrals' because it is anatural extension of the Double Integral.

Y ou will find that our approach to integration isto view it amost exclusively as a summation. Seeing an
integral sign in 8.02 should cause you to think "Oh, hereis asummation; | know what it means even if |
can't solveit". (Theideaof integration as 'inverse differentiation’ is a useful concept, of course, for
actually carrying out the integration operation; however we do not stressiit here.)

ONE-DIMENSIONAL ('LINE) INTEGRALS

Integral as summation along a straight line

The concept of integration as a summation of quantitiesis now illustrated. The length L of astraight line
running in the x direction fromx =atox="b (Fig. 1) can be calculated from a sum of the length
elements dx,

y Integration path
-« — L >
® L= 2 | |
|
. b X
a Fig. 1
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Inthelimit (Ax - dx), the summation sign becomes the integral sign,

b
2 L = f dx = b-a (meters)*

a

One wag has been known to say that if you write (1) fast enough, the > will begin to look like the integral
signin (2). When you see the integral sign, it is perfectly correct to think 'summation’ (i.e., Eq. 2) where,
of course, the summed intervals are infinitessmally small.

*We occasionally give appropriate Sl unitsin this document as a guide; most or al of the equations
herein are independent of the choice of units.

The Single Integral can aso be used to sum a given quantity along the line. In E& M, the concept of
electric charge Q (units ‘Coulomb’ or 'C") isintroduced. For example, individua electrons carry afixed
negative charge of 1.6 x 1019 C. If lots of charges (e.g., electrons) are distributed along aline, one can
define alinear charge density A (X) (C/m). If the charges are uniformly distributed, A isaconstant, and
thetotal charge Q aong the line would then be

b b
3 Q= f Adx = }\f dx = A(b-a (Coulombs)

a a

Note that the integration process indeed does yield the obvioudly correct answer you would obtain by
direct multiplication.

Summation of a function f(x) along a straight line

Integration becomes necessary if one wishesto sum agiven physical quantity f(x) that is afunction of
position x. For example, let the charge density A(X) be the following function of X,

4 AX) = kx2 (Coulomb/meter)

wherek isa constant. The total charge Q isthen

b b o (0%~ o)
(5) sz Ax) dx = f k x2 dx =k><33‘ = k 2 =27 (Coulombs)

a 3
a a

Hereit is not obvious that the answer is correct. Y ou could adopt specific values of a, b, and k and do a
stepwise summeation to convince yourself the answer in (5) is approximately correct. Or rather, you could
review the proof of the calculus theorem that the summation in the limit over theinterval a< x< bis
indeed the equivalent of the integration,

b m
(6) L A(X)dx = )|(IT 0. 21 A(X) AX; (fora<x<h)
m - ©oo

Lineintegral: a single integration along an arbitrary path
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Anintegra can equaly well be taken along alinethat is not Integration path,
straight. The path can liein aplaneasshownin Fig. 2 or it y length L _
can be acurvein 3—dimensional space. InFig. 2, dsisa b
displacement vector with magnitude that is the differential ds
length element (analogous to dx) and with the direction of
the displacement at the given position.

We could sum by integration the magnitudes of differential Fig. 2
lengths [ds| to get the total length L of the line much aswe )
didin (2). Similarly, we could calculate the total charge Q

much aswe did in (3) and (5).

The formalism would be somewhat different than in (2), (3) and (5) because we would have to properly
describe the magnitude of dsin terms of its components dx and dy. Y ou are not likely to encounter this
particular problem in 8.02, so we move right on to the case where the integrand of the lineintegral isa
vector dot product.

Vector dot product

The quantity dW = F-dsisavector dot product; it y (a
represents the increment of work dw done by the

force F that is exerted on an object when the object is \
displaced the distance and direction indicated by the 9 '
vector ds. The definition of the dot product is (See --v
Fig. 3) ds

(7) F-ds = |F||ds| cos 8

where 6 isthe angle between the vectors. Thusthe . X
dot product is the projection of the force along the Fig. 3

path times the path element, e.g., the product F| |ds]

in Fig. 3a, or if the displacement isin the x direction, Fydx (Fig. 3b).

In general, the dot product may be written in cartesian coordinates as (see your text):

(8) F-ds = FX dx + Fy dy + FZ dz

The cartesian components of the displacement vector ds are dx, dy, and dz.

Dot product in polar coodinates

In polar coordinatesin the (r,6) plane, the dot product of F-ds can be shown to be (see your text):

9) F-ds = Fpdr + Fgrdo

Thisform of the dot product is particularly useful when we deal with ‘central’ (radial) forces, like
Newton's law of gravitation, or electric fields. Centra forces by definition have only radial components,
i.e., FQ = 0.
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Problem B1: Show that Eq. 9 is correct, from an examination of Figs. 4a,b. The vector ds represents the
displacement; its (scalar) components are shown. Y ou may base your argument upon a simple analogy
to Eg. 8.

Lineintegral of a dot product

In 8.01, you learned of force fields wherein aforce vector F(x,y,z) could be assigned to every point in
space. [In Electromagnetism, we a so have vector fields, such asthe dectric field vector E(x,y,2)] Y ou will
learn about it early in 8.02. A typical integration with which you may be familiar isthe calculation of the
potential energy at point b relative to point a, U(b) —U(a). By definition, thisis the negative of the work
done by a conservative force on abody as the body is moved from point a to point b (Fig. 53). In its most
general form, the definition makes use of the dot product F-ds,

b
(10) U(b) — U@ = - I Fds (Joules)

a

Thisformula can be applied to any arbitrary path in 3—-dimensiona space. Y ou will note that the integral
amounts to a summation of the elements of work dw along the path traversed.

€Y (b) F v
y y
F g > /F' = _ _
— b o — -
a ds _~-¥ a ?s>
X X
Fig. 5
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Displacementsin the x direction

If the displacement of the body isin the x direction, as shown in Fig. 5b (so dy =dz=0), or if theforce
isinthex direction (so Fy=Fz= 0), Eq. 10 becomes, using (8):

b
(12) Ub) -U(a) = - f Fx dx (e.g., fordy=dz=0)

a

Now the integration in (11) is ssimply the sum of the products Fy dx, i.e., the sum of all the elements of
work, which in turnisthe total work done during the displacement from a to b. Thisiswhat we intended
when we wrote (10). We have thus demonstrated that (10) has the intended meaning and that it can easily
reduce to asimple 'normal’ integral with ascalar argument. The moral isto not et a dot product inside an
integral cause panic; it can be immediately converted to scalar notation and solved ala 18.01.

Displacementsin the radial direction
If the motion isonly along the radia direction (so d6= 0) or if the forceis solely in the radia
direction (so Fg=0), theintegral (10) may be written, with the help of (9):

(12)

b
U(b) -U(a) = —f Frdr  (Joules)

a

(e.g., for Fg=00rdf =0)

In Fig. 6, weillustrate a displacement in the negative Fig. 6 X
radia direction (from ato b) in the presence of a =
radial force field. Equation 12 appliesto this Situation.

A common force (in mechanics and in electromagnetism) is an inverse squared radial force, i.e., Fy ~
Ur2and Fg=0. If thisforceisrepulsive, unlike gravity but like the electric force between 2 like charges,
it may be written:

— o k =
(13) F = FrUr = +r72 Ur

where the + sign indicates that the force isin the positive radial direction (Fig. 6), kisaconstant and Uy is
aunit radia vector. The potential energy isusualy referenced to the potential a infinity so the potential
energy at radiusr becomes, from (12) and (13):

.
(14) u(r) — U(w) = —f +k r2dr (sinceFg =0)

o0
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It isimportant for problem solving to note the relative positions of the symbols a and b on the left and
right sides of (12). The a appears asthe lower limit and in the second or reference value of U, and the b
as the upper limit and the first or desired value of U. The same relative positions of r and o are adhered
toin (14). Also note that the correct sign was used for the force component Fy in the integral of (14).
The integration limits automatically take into account the direction of displacement. Theintegration
operation then gives the correct sign for the potential energy.

Solving (14) by the usua rules of integration, and adopting the convention that U(e) = 0, we obtain
(15) u(r) = + kir

Thisresult tells us that the potential energy is positive for al radii lessthan infinity. Thisisin accord
with our ideas of potential energy. When atest body is carried from infinity to afinite radius against a
repulsive force, the system ends up with stored (i.e., positive) potential energy. We have demonstrated
that our procedures regarding signs, etc. lead usto the correct result, at least in this case.

In electromagnetism, we will encounter the above formalism but will define somewhat different terms, e.g.
the electric force per unit charge, called the electric field E, and the potential energy per unit charge, called
the potential V. These are related with an equation identical in form to (12):

b
(16) V(b) -V(a) = - f Erdr (Joules) (eg., for Eg=0)
a

Integral around a closed path

A lineintegral may be taken around a complete closed path, Cq, y
apath that endswhereit begins (e.g. at A ). Such apathisthe

boundary of asurface (Fig. 7). Anintegral around aclosed +
path isindicated by alittle circle on the integral sign. For
example, the work W by aforce on abody that is carried

around the arbitrary closed path C1 shownin Fig. 7is, F
symbalicaly,
X
Fig. 7
(17) W = f Fds (Joules)
C1

Often in 8.02, you are asked to understand the physical meaning of an integral; it isalogical statement
and need not be a difficult calculation. The meaning of (17) is. "the quantity Wisthe sum of the
elements of work done by force F on abody that is displaced along the individual €lements ds that
congtitute the complete closed path”. Asyou know, if aforceis conservative (like gravity or an
electrostatic force), the work done around a closed path is zero; hence W= 0. Other forces or quantities
(see below) can give non—zero values.

10
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Example: Lineintegral around a circular path

If in fact, you are asked to actually carry out an integration, the R
vector field will probably be ridiculoudy smple, e.g. aforce F Fo Ug
with only an azimuthal component, Fg (see Fig. 8; compare
to Fig. 43). An example might be the (non—conservative) force "o ﬁ +0
exerted by awhirlpool on aboat (if the radial component is
negligible). If the azimuthal forceisafunction of radius, but
not of azimuth, it could have the form: Integrati on/ /
path C, F
(18) F=Fglg = +kr1g Fig. 8

In (18), Ug isaunit vector in the azimutha direction, kisa

constant, and the '+' indicates that the force isin the positive

azimuthal direction. If we are asked to integrate the quantity F-ds around a circular path Cp at constant
radiusrq (Fig. 8), we have from (9) and (18):

2 2 2
(19) W=f Flds = f Fg rod@ = f +krglrpdd = krglrof do = +2mk
C 0 0 0

We do not obtain zero because net work is done by the non—conservative force as the body is carried
around the path. Since the body was carried around the circle in the direction of the force vector, the work
W (by the force) is expected to be positive; this agrees with the result we obtained.

Asinour earlier calculation (Eq. 14), we obtained the correct sign by using the correct sign for the force
in (19). A positive direction was adopted (counterclockwise ‘ccw' in Fig. 8), and that convention was used
for the force component Fg (Eg. 18) and for the direction of increasing angle 8. Thusthe ccw direction
of angular displacement in our problem (Fig. 8) is positive, and the limits on the integra reflect this. They
indicate that the body movesfrom 8= 0to 8= 2 (If the positive direction had been defined as
clockwise, the integration limits for ccw displacementswould be, eg., Oto—2m or 2 t00.)

For any azimuthal force F g, independent of 6, theintegral (19) can be written,

2
(20) W = f Flds = Fy rof dé = Fg 2mrg (Fr = 0)
Co 0
This expression (20) istransparently the work done by the force as the body moves around the circle; it
is simply the constant azimuthal force multiplied by the distance around the circular path. You see
therefore that the integral (19) takes on avery smple form (20) if the force F is azimutha and axially
Symmetric.

11
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Line integral for magnetic field (anticipated)

In E&M, the magnetic field vector B dueto a
current in along straight wire is azimutha and
decreases as 1/r wherer isthe distance from the
wire (Fig. 9). Thefield linesare circular about

Integration I
Path

Wire
thewire, and theintegral  {B(ds = 2711 By is carrying
directly related to the current in the wire current
(Ampere'sLaw). We will therefore have out of
occasion to evaluate integrals such as (20). paper - -
However, the result will not be ‘work' because the
magnetic field B is not aforce; it isamagnetic
fied. Magnetic

FieldLines

DOUBLE ('SURFACE) INTEGRALS
Double integral as a summation

Itispossibleto caculate the area A of a surface with 'double’ integralsjust as we were able to calculate the
length of alinewith a'single integral. Thus, an area A in the x-y plane would have the value:

(21) A:ff dxdy = lim > > A4y (m?)
surface i

A - 0 i

ij -0
where the summation isover al the little area elements dx
indicated by the products Ax; Ay; that make up the surface  y L dA = dx dy
of interest (Fig. 10) and where the integration limits (not /_'h'_\ B
given) represent the boundary of the surface. The . — \
summation (right—hand term) is obviously a correct dy = = { H }
description of thetotal area, athough it isincomplete in that =
the summation limits that define the boundaries are not
indicated. Equation (21) defines the meaning of ‘double
integral’. We show next that operationally it smply Fig. 10

amounts to two one-dimensional integrations.

12
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Area of arectangle

y =

Mathematically, the double integral smply represents two dﬁ d dy
sequential integrations, asfollows: ~

LT T AT Area of

dy[l/ stripis

(22) A= dx dy = dx | dy dx ady

IR NN

a X

where the integral inside the square brackets s carried out :

first. Asasimple example, let us obtain the area A of the Fig. 11
rectangle (dark boundary) shown in Fig. 11. Wefirst install limits on the integration to define the
boundaries of the surface of interest and then proceed to integrate.

b ra b a b b
(23) A=ffdxdyEfde]dy=fady=afdy=ab
0 0 0 0 0 0

Theresult is patently the correct answer, the width times the height (Fig. 11). We have therefore
demonstrated that this operational definition of the double integral givesthe correct answer, thus
validating, for this case, the identity of (21) and the operational definition of (22).

It isthus appropriateto think of a double integral asthe sum of the integrands (e.g., the
product 'dx dy' in Eq. 21) evaluated at each incremental location on a 2—dimensional surface.
(For the singleintegral, the integrand was eval uated at each location along aline.)

The process of carrying out the 2 integralsin (23) can be visualized as two summations. Theintegration
over x isthe addition of all the elementsdx dy inarow at afixedy (Fig. 11). Theareaof arow is'ady' in
our example. The integration over y is then the sum of the rows.

In the most general case, the boundaries of the surface are not constant values, e.g. the upper limit aon
theinner integra of (23) could be afunction of y, viz a(y). Operationally, one would proceed exactly as
above. Thefunction a(y) would end up as part of the integrand of the outer 'y integral. [In the more
general case (e.g., Fig. 10), thelower limit of the inner integral would also be afunction of y. The limits
on the outer integral would be the extreme y values of the surface]

Summation of charge on a surface

The integrand of adouble integral can contain more information than just the area of each el ement. For
instance, it can contain the charge density o(x,y) (Coulomb/m?). If a(x,y) is multiplied by the area
element dx dy at each (x,y) coordinate, we have the element of charge, dQ = o(x,y) dx dy. Thetota charge
Q on asurface area of interest can be summed with an integration. For our rectangular area (Fig. 11), we
have

b ra
(24) Q= f f o(x,y) dxdy (Coulombs)
0

0

13
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How does one argue that (24) isthe correct formulation to give us the total charge? Again, we fall back on
the summation equivaence of (21). The integrand of (24) is the product of the charge dendity, g, times
the area, dx dy, of the element. Clearly the summation of these integrandsis the desired total charge.

One can proceed with the integration if the function o(x,y) isknown. Let us assume asimple function,
eg., axy) = kxy, wherekisaconstant. Then,

b a b a b
(25) Q:f U kxydx | dy =f ‘kyf xdxw dy =f {kyaﬂ dy
0 0 0 0 0

Note that the y istreated as a constant during the x integration; as discussed above, thisintegrationisa
summation of elements along arow at fixed y (Fig. 11). Continuing with the y integration (the summation
of rows):

b

2

(26) Q= kaZZI ydy = kajb (Coulombs)
0

Thisisthe desired charge on the surface.

Problem B2: What is the charge Q on the rectangular surface of Fig. 11 if the charge density is
o(x,y) = k ex/(23) g¥/(2b) where k is a constant?

Surfaceintegral in polar coordinates

Sometimes one encounters a situation where the geometry cries out for polar coordinates. Suppose for
instance we wish to calculate the total charge Q on acircular plate of radius R (Fig. 12), where the charge
density isafunction of radiusr but isindependent of azimuth 6, e.g. o(r,8) = + kr2(Coulomb/m2)
where again kisaconstant. The problem will be greatly smplified if the area element iswritten in terms
of r and 6, namely dA; =r d@ dr (Fig. 12a).

dr
rdé
dA;=rdf dr
dA,= 2mrdr
Fig. 12

The summation of the charge elements, o(r,0) dA;, then takesthe form:

14
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R 2 R 2
(27) Q :ff o(r,0) dA; = f U kr2rd6] dr = f kr3U d9] dr
Circular 0 0 0 0

surface

where the limits on the integrals define the circular surface over which we are summing the charge.
Continuing,

R
4
(28) Q= f kr32mdr = ZH‘ZR (Coulombs)
0

Note that the variabler is held constant during the @integration. For most practical problems, the order of
integration isimmaterial; the integration over radiusr could have been the 'inner’ integral whichis
performed first.

Surface charge obtained with a single integral

The example given in (27) and (28) would be disguised as a'Singl€' integral in most freshman physics
texts, even though it really isa2—dimensional surfaceintegral! Thisis possible because of the circular
symmetry of both the geometry and the function being integrated, o(r,8) — o(r) = kr2. One can then
write

R R
(29) Q = f o(r)dA; = f o(r) 2mrrdr
0 0

where the area element, dA, = 27tr dr, issimply the area of an annular ring of width dr at radiusr (Fig.
12b). The integrand, o(r) 2rtr dr, isthus the charge on the ring, and the integration over r isthe
summation over al the rings. Substitution of o(r) = kr2 into (29) immediately yields the result givenin
(28). The following problem does not have this azimuthal symmetry so a 2-dmensiona surface integral
must be used.

15
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Problem B3: The charge distribution on acircular plate of radius Ris afunction of both azimuth and
radius, o(r,6) = kr (1—sin 8) (Coulomb/m?2). What is the total charge Q (Coulombs) on the plate?

Volume of a solid with a double integral.

Another example of the double integra isthe calculation of volume. The function multiplying the area
element dx dy in theintegrand isthe height z=f(x,y) of asolid. The sum (integral) of the integrands then
gives the volume of the solid. We will see below that a 3-dimensional integral is another (equivalent) way
to obtain volumes.

Again, we remind the reader that an integral is often written smply asalogical statement of summation; it
doesn't necessarily have to be integrated. If one must solve an intractable integral, a computer can be
programmed to tediously (but rapidly) do al the required sums, one-by—one. Y ou will notice that the
examples used in this document and in 8.02 are carefully set up to have easy—to-integrate functions or
symmetries that simplify the integration.

Closed surfaces

Closed surfaces can be defined, analogoudly to closed paths. These are surfaces that completely enclose a
volume, like a basketball or a cylinder closed at both ends. (Water can't pour out, and if the materia is
opagque you can't peek in.) Thereis nothing that precludes us from treating a closed surface in the same
manner as the 'open’ surfaces described above. One can integrate over it to find its area, the total charge on
it, or the éectric field due to charge distributed over it.

A basic closed surface is a sphere of radius R. We can write the integral for the calculation of itstotal
area, and of course we already know the answer. Thus:

(30) A:ﬁ dA = 4mR?

sphere of
radius R

Note that we again use the loop to indicate closure. The loop on the double integral indicates a closed
surface.

Area of a sphere (This subsection may be skipped.)

Theresult in (30) can be obtained by writing out the area el ement on a sphere in spherical coordinates
(seeyour text), in polar coordinates where @isthe polar angle and ¢the azimuthal angle,

(31) dA = R2sin 0 d8 dg

and by integrating over the entire sphere. We do not work this out here. [Y our math text may reverse the
roles of 8and ¢ Physicists usually use the definitions given just above.]
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Problem B4 (Optional, advanced problem): Carry out the integration in Eq. (30) to obtain the area of the
sphere. Usethe area element given in (31), after satisfying yourself that it is correct. Note that the
azimuthal angle @must be integrated from O to 277 radians and that the polar angle 8 must be integrated
from O to 7T radiansin order to properly sum over the entire surface. Also note that the radius Risthe
same for each surface element; thusit should be treated as a constant in the integration.

Example: Charge on a sphere

A graightforward problem is the determination of the total charge Q on a sphereif the chargeis
distributed uniformly over the entire sphere, i.e., the charge density oisindependent of 8 and ¢ The
integral and its solution are, from (30):

(32) Q:# o dA =0# dA = o 4m R?

sphere of sphere of
radiusR radiusR

The constancy of o alowed usto removeit from the integral. The value of the double integral is known
from high school geometry (i.e., from Eq. 30). Thus, it isnot necessary to grind through the integral of
the above problem (B4). Note that here we used the integral signs solely asalogica symbol for
summation. Thisexampleistypical of 8.02 problems.

Closed surface consisting of several parts

Some dightly more complicated problems may be solved by
breaking the surface integral (summation) into 2 or more
integrations (summations). For instance, suppose a closed surface
consists of 2 hemispheres of different radii but common centers and
aflat annular surface connecting the two (Fig. 13). Let the radii for
the two hemispheres be R; and Ry, their surface charge densities
(C/m2) to be 01 and 05, respectively, and the surface charge
density on the flat surface be 3. The total charge, generally
speaking, is

(33) Q= #B-part o(6.0) dA

closed
surface

Thisintegral over the 3—part closed surface may be rewritten as the sum of 3 separate integrals, one for
each portion of the surface. Thisis clearly valid because (33) itself isa sum. The integrand for each will
include one of the constants: 0y, 0y, or o3
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(34) Q= [[ oday + [ opda, + [[ o3dA;

hemisphere hemisphere annulus
#1 #2
Each of these termsisthe sum of the elemental charges on one of the 3 surfaces. Note the absence of
loops on theintegral signs; each of the 3 integrationsis over an open surface.

The constancy of the charge densities permits us to proceed.

@ Q=oa [[ d + 0o [[ dy +o [] dAg

hemisphere hemisphere annulus
#1 #2

The integrals are now trivial; each represents an areayou learned in high school. Thus thereis no need to
carry out explicit integrations.

Problem B5: Carry out asimilar calculation for a closed surface with cylindrical sides of radius R, height
h, and charge density o, and with flat closed ends of charge density ge. What isthetotal charge Q on
the closed surface?

Integral of dot product over a surface

Another important use of the double integral isto sum avector dot product over asurface. For example,
in 8.02, the electric 'flux' @ emerging from an arbitrary surface (open or closed) will be defined as
follows:

37) ®e = [[EdA

arbitrary
surface

The eectric field vector E has a direction and magnitude at each point in space. A vector dA is defined for
each surface element; its magnitude is the value of the area (in m2) of the element and its direction is
normal to the element (Fig. 14a). (The magnitude is the quantity we heretofore called dA.) The vector

dA for aclosed surface is always chosen to be directed outward (Figs. 14a,b) rather than inward. For an
open surface, it is chosen to be in the direction arbitrarily chosen as 'positive. The integral (37), as written,
issimply the sum of the values of E-dA evauated at each element of the surface. Y ou will learn early in
8.02 the reason this summation is called aflux.
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How does one

evaluate such an €))

integral as (37)? A E
dot product, as

usud, may be

written asthe dA dA
product of the

magnitude of one of

the vectors (i.e., dA E

= |dA|) timesthe dA is [Jto surface

value of the )

projection Fig. 14
(component) of the

other vector E aong the direction of the first vector.

Inour case, E-dA = EdA, where E, is the component of E parallel to dA, i.e., normal to the surface
element in question, and where the value of E istaken at the location of that surface element. In general,
the orientation of each surface element islikely to be different asis the direction of E. Nevertheless, at
each surface e ement, EdA has the same value as the vector dot product (which itself isascalar) at that
position. Theintegral (37) thus can be written without vector notation:

arbitrary
surface

Dot product evaluated over a sphere

A trick for the evaluation of the integral (38) isto choose (if the problem permits) electric fields and
surfaces such that E,,, the normal component of the electric field E, has a constant value at every position
on the surface. Then E, may be removed from theintegral. A smple example is a spherical closed surface
of radius Rwith a point-like charge at the center. Since E isradid, E isnormal to the surface with a
constant magnitude everywhere on the surface (Fig. 14b).

(39) CDE:# E-dA:)%( EndA:En)%( dA =E  4nTR?
sphere sphere sphere

radius R radius R radius R

One could now substitute the radial dependence of Ey, i.e, E=kr=2, into thisresult.

Sometimes the closed surface is arranged so part of it is everywhere paralldl to the E field; hence E,, = 0.
The closed surface would thus consist of two or more open surfaces, some with E,, = 0 and one
(typically) with Ep, constant over the entire (open) surface. Theintegral (38) is broken into two or more
pieces, one for each of the open surfaces, and those with E;, = 0 give zero. The other yieldsavalue for Ep,
asyou will learn.

Remember that flux may be defined for both open and closed surfaces. We present a closed—surface
exampl e because closed surfaces are afundamental part of Gauss's Law which you will encounter in the

2nd week of the course.
END of MATERIAL NEEDED IN EARLY WEEKS OF 8.02
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TRIPLE INTEGRALS
(Useful later in course.)

Volume (triple) integrals are used very little in 8.02. 1f you do encounter them, it will probably be quite

late in the course, after you have covered the material in 18.02. Nevertheless, for completeness, we
describe them here briefly.

Volume calculated with a triple integral

A triple (3-dimensiond) integral is adirect extension of the ideas presented above. For instance,
the volume V of an arbitrary solid (Fig. 15a) may be written

(40) V=([ffdav=[f[ dxdydz

arbitrary arbitrary
volume volume

The limits to the integrals would consist of functions that define the boundaries. This formulation can be
shown to be equivalent to the way volumes are cal culated with double integrals.

€ (b) dv= dx dy dz
z ?) /
, /
| / c
' dz
. y_- z_ | _
/ . , dy dx a y
V
X
v b
Fig. 15

A trivial example of avolume calculation isabox with sides a, b, and ¢ (Fig. 15b). In this case the
volume calculationis:

el f Lo [

volume
of box

Carrying out the integration, inner integral in square bracketsfirst, easily yields the obvioudy correct
answer.

(42) V=abc
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Chargein a volume

Thetotal charge in asolid may be calculated analogoudly to our 2—dimensional calculations. If
p(x,y,2) isthe charge volume density (C/m3), for the volume shown in Fig. 15b,
‘b ‘b

rC ra

p(xy,z) dvV =

rC ra

43) Q= ’ p(xy.2) dxdy dz (Coulombs)

10

10 JO 10 JO0 JO

Thisintegration is smply asummation of the charge e ements, evaluated at each volume element. If
p(xy,2) isawell behaved function that can be integrated, one can proceed to determine the total charge. If,
for instance, the density is uniform (constant) throughout the volume, p(x,y,2) = pg, then, from (43):

'c b ra 'c rb ra

(44) Q = ’ dv = poabec

10

Po(xy,2) dV = po

10 JO 0 /O /O

The result, of course, is as expected.

The following problem applies to the case when p(x,y,2) is not constant. The integration however
is straightforward.

Problem B6 (Optional): The volume density of charge (C/m3) in the rectangular volume of Fig. 15bis
p(xy,2) = kx2y3zZY2 wherek is aconstant. What is the total charge Q contained in the volume?

To close out this discussion, we present here the volume element dV in spherical coordinates; it
should be derived and illustrated in your math text.

(45) dV = r2sin 8dr d8de.
(Again, we adopt the physics convention that 8 isthe polar angle and ¢ the azimuthal angle.)

Thefinal problem makes use of (45) and provides exercise in the evaluation of a 3-dimensional integral.

Problem B7 (Optional, advanced problem): Find the volume of a sphere of radius R. Use the volume
element (45) and evaluatetheintegral: V = [ [ [ dV over the entire volume of the sphere.
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