The quiz has four questions. It is a closed book quiz. No calculators are allowed.
A letter-size formula sheet can be used, but has to be signed and submitted together with
the quiz.

LAST NAME

FIRST NAME

MIT ID#

RECITATION SECTION

<table>
<thead>
<tr>
<th>REC</th>
<th>MW</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rec01</td>
<td>MW11</td>
<td>B. Zeng</td>
</tr>
<tr>
<td>Rec02</td>
<td>MW12</td>
<td>B. Zeng</td>
</tr>
<tr>
<td>Rec03</td>
<td>MW1</td>
<td>D. Nagaj</td>
</tr>
<tr>
<td>Rec04</td>
<td>TR11</td>
<td>G. Benedek</td>
</tr>
<tr>
<td>Rec05</td>
<td>TR1</td>
<td>G. Benedek</td>
</tr>
<tr>
<td>Rec06</td>
<td>TR2</td>
<td>G. Benedek</td>
</tr>
<tr>
<td>Rec07</td>
<td>TR3</td>
<td>Daniel Nagaj</td>
</tr>
</tbody>
</table>

Problem #1

Problem #2

Problem #3

Problem #4

TOTAL
Problem 1 (25 points)

Consider the configuration of point charges shown below, with two negative charges \(-Q_0\) and a positive charge \(+Q_0\) forming an equilateral triangle (all sides have length \(d\)) in the x-y plane.

(a) What is the direction and magnitude of the force on the positive charge \(+Q_0\) in terms of the given quantities?

(b) What is the direction and magnitude of the electric field at point \(x_0\) halfway in between the two negative charges?

(c) Now, assume that the two negative charges are fixed in space and that \(+Q_0\) is freely movable. Describe the motion \(+Q_0\) would undergo if released from rest from the original position shown below (2-3 sentences)
Problem 2 (25 points)

In lecture, you saw that an electrically charged plexiglass rod could be used to attract electrically neutral objects like a balloon made out of conducting foil.

(a) In a few sentences, explain the origin of the force between a charged object like the rod and an electrically neutral conducting object.

(b) Attraction can also be seen between a charged object and electrically neutral insulators. For example, the rod can be used to pick up pieces of confetti. How does this differ from the process described in (a)?
Problem 3 (25 points)

Shown below is the cross-section of a conducting sphere of radius \(R/2 \), surrounded by a very thin conducting spherical shell of radius \(R \). The inner sphere carries a charge \(+Q_0\) and the outer shell carries a charge \(-Q_0\).

(a) On the figure, indicate the distribution of charge on the inner sphere.

(b) Using Gauss’s Law, find the strength of the electric field \(E(r) \) as a function of \(r \) from \(r=0 \) to \(r > R \), where \(r \) is the distance from the center of the sphere. Results without work will not receive credit.

(c) On the figure, show your solution to (b) using field lines
Problem 4 (25 points)

Shown below is the cross-section of two large parallel plates carrying charges +Q (top) and -Q (bottom). Each plate has area A. Vertically between the plates, a small charged particle with charge q and mass m is suspended at y=d/2, i.e. the force of gravity $F_G = -m \cdot g$ and the electrostatic force on the particle cancel.

(a) What is the sign of the small particles charge q?

(b) Determine q in terms of the other quantities given. Neglect fringe effects for the electric field created by the two plates.

(c) Sketch the electric potential energy U_E of the charged particle as a function of y from y=0 to y=d, assuming $U_E = 0$ at y=0.

(d) Sketch the total potential energy U_T of the particle as a function of y from y=0 to y=d.

(e) Sketch the electric potential V between the plates (ignore the charge q) from y=0 to y=d.