Quiz 2b

\[\frac{q}{E} d\alpha = \frac{Q_m}{\varepsilon_0} \]

\[E - 2A = \frac{qA}{\varepsilon_0} \]

\[E = \frac{\varepsilon_0}{2\varepsilon_0} \]

+ \(\frac{q}{A} \)

\[tE, \downarrow E \Rightarrow \vec{E} = 0 \]

- \(\frac{q}{A} \)

\[tE, \downarrow E \Rightarrow \vec{E} = \frac{E}{\varepsilon} \]

\[\downarrow E, \uparrow E \Rightarrow \vec{E} = 0 \]

\[V_{at} = - \int_0^t E \cdot ds = - \int_0^t \frac{E}{\varepsilon_0} \cdot t \cdot 3d = \frac{Q}{A} \frac{d}{\varepsilon_0} \]

\[Q = CV \Rightarrow C = \frac{AE_0}{d} \]

a) \(d \rightarrow 2d \)

\[C \rightarrow C_0/2 \]

\[Q \rightarrow Q \]

\[V \rightarrow 2AV \]

b) \(P = 2V = \frac{dQ}{dt} \)

\[P = \int_0^t \frac{dQ}{d\alpha} \cdot \frac{d\alpha}{dt} \]

\[P = 2 \]

\[C \rightarrow C/2 \]

\[U \rightarrow 2U = \left(\frac{Q^2}{\varepsilon_0} \right) \]

d) \[U = \frac{1}{2} \frac{Q^2}{\varepsilon} = \frac{1}{2} CV^2 \]

\[V \rightarrow V_0 \]

\[C \rightarrow C_0/2 \]

\[U = U_0/2 = \frac{Q^2}{4\varepsilon_0} \]

Notice: \(E \) remains the same in parts a-c but the volume it is affecting is doubled. In part d, \(E \) reduces to half its value.

c) Energy was added to the system by doing work against the electrical force to move the plates.
Problem 2 (20 points)

Shown below is the cross-section of a parallel plate capacitor with distance 2*d between the plates. The capacitor is given a charge Q using a power supply and then disconnected from the power supply. Then a dielectric with thickness d and dielectric constant K=2 is inserted between the plates.

(a) Does the stored energy increase, decrease or stay the same when the dielectric is inserted?

\[U = \frac{1}{2} \frac{Q^2}{C} \]

\[C = \frac{\varepsilon_0}{2} + K \frac{\varepsilon_0}{2} \]

The energy decreases

(b) On the graph below, draw a qualitative sketch of the electric potential between the capacitor plates as a function of x between x=0 and x=2d. At which value of x did you choose to set V=0?

[Sketch of capacitor with labels for x=0, x=2d, and potential V vs. x graph]

I chose x=2d as V=0
A different choice of V=0 would also give a correct result
(By moving this sketch up or down)
I will draw the multimeters as:

before: $S_2 = 0$ (circuit is open), $V_a = V_b$

a) $V = 400V$

b) $ΔV = V_a - V_b = 0$

c) $V_b = 0$

d) $ΔV = V_a - V_b = 3.9V$

e) The HVPS produces more current so there is a higher potential drop caused by the internal resistance of the HVPS

f) $V = F\cdot d = \frac{F}{m}d$

\[
\begin{align*}
F &\rightarrow F \\
m &\rightarrow m \\
V &\rightarrow 2V \\
d &\rightarrow 2d
\end{align*}
\]

MM would read 800V
a) \[P = IV = \frac{V^2}{R} \]

\[R_1 = \frac{V^2}{P} = \frac{144}{36} = 4 \, \Omega \]

b) \[P = IV = I^2R \]

Since they have the same resistance and the same current flows through them, they would show the same brightness.

c) \[R_2 = \frac{V^2}{P} = \frac{144}{72} = 2 \, \Omega \]

\[P = I^2R \]

\[I_1 = I_2 \]

\[R_1 > R_2 \]

Bulb 1 would burn brighter.
Practice (a)

1.
(a) \(I_1 = I_2 + I_3 \)
\[I_1 > I_2 \quad \text{and} \quad I_1 > I_3 \]
\[P_1 = I_1^2 R_1 \]
So bulb 1 is **brightest**
(b) bulb 1 is brighter, bulb 3 is less brighter.

If the resistance of bulb 2 is reduced to \(\frac{1}{2} \),
Then \(I_1 \) increases, \(U_1 \) increases, \(U_3 \) decreases,
\[P_1 = I_1^2 R_1 \quad \text{and} \quad P_3 = \frac{U_3^2}{R_3} \]
So bulb 1 is brighter, bulb 3 is less brighter.

2.
(a) \[C = \frac{2\varepsilon_0 A}{d_0} \]
\[E = \frac{1}{2} \frac{Q^2}{C} = \frac{d_0}{\varepsilon_0 A} Q^2 \]
(b) \[U = \frac{Q^2}{C} = \frac{d_0 Q}{2\varepsilon_0 A} \] is unchanged.

After separating,
\[\frac{1}{C'} = \frac{1}{C_{\text{glass}}} + \frac{2}{C_{\text{air}}} = \frac{d_0}{2\varepsilon_0 A} + \frac{2}{\varepsilon_0 A} \]
\[= \frac{3d_0}{2\varepsilon_0 A} \]
\[U_{\text{stored}} = \frac{1}{2} CV^2 \]
\[= \frac{1}{2} \frac{2\varepsilon_0 A}{3\varepsilon_0} \left(\frac{d\varepsilon Q}{d\varepsilon} \right)^{-2} \]
\[= \frac{\varepsilon_0}{12\varepsilon_0 A} Q^2 \]

3.
(a) \[\Delta V = U \]
\[\frac{\Delta V}{\Delta t} = \frac{dU}{d\varepsilon} \]
\[\frac{\Delta V}{\Delta t} \rightarrow \Delta V = \frac{dU}{d\varepsilon} \]

\[U = \int \Delta V \]
\[U = \int \frac{dU}{d\varepsilon} \]
\[\int \Delta V = U \]
\[\frac{1}{\varepsilon} \int \Delta V = U \]

\[U = \int \Delta V \]

\[\Delta V + \int \varepsilon d\varepsilon = U_c \]
\[\Delta V + \frac{\varepsilon_0}{\varepsilon} \frac{dU_c}{dt} = U_c \]
\[\Rightarrow U_c = \Delta V (1 - e^{-\frac{t}{\varepsilon r}}) \]

\[Q = C U_c = C \Delta V (1 - e^{-\frac{t}{\varepsilon r}}) \]
(b) \[P = \Delta V I_c \]
\[= \Delta V (1 - e^{-\frac{t}{cr}}) \frac{\Delta V}{\sqrt{r}} e^{-\frac{t}{cr}} \]

So when \(1 - e^{-\frac{t}{cr}} = e^{-\frac{t}{cr}} \)

\(P \) gets maximum.

\[\Rightarrow t = cr \ln 2. \]
\[= 100 \times 10^{-6} \times 10 \times 10^3 \ln 2 \]
\[= \ln 2 \times 5 \]

(c) \[P_{\text{max}} = \frac{1}{4} \frac{\Delta V^2}{r} = \frac{1}{4} \frac{4000^2}{10 \times 10^3} = 400 \text{ W} \]

4.

(a) \[V_{\text{mmi}} = 150 \text{ V} \quad V_{\text{mii}} \]
\[V_{\text{miii}} = 150 \text{ V} \]

(b) \[V_{\text{mmi}} = 300 \text{ V} \]
\[V_{\text{mii}} = 0 \text{ V} \]
(C) before foil jumps

\[E = \frac{\Delta V}{\alpha} \]

\[F = QE = \frac{Q \Delta V}{\alpha} \]