
Using a Sommerfeld-Watson Transformation

to Investigate a Certain Aspect of a

Solution of Laplace’s Equation

Disclaimer: These notes are a bit outside of 8.03 at MIT, and might even be

considered a bit of a novelty. The details of the Sommerfeld-Watson transformation

will not be given; if anything, an easier form of the transformation could be used

to find the sums given in the notes Some Sums. However, these notes show the

kind of trick that we have up our collective sleeve.

Consider the boundary-value Laplace’s Equation for T (x, y) on the square

0 < x < 1, 0 < y < 1,

∇2T = 0, T (x, 0) = 1, T (1, y) = T (x, 1) = T (0, y) = 0.

Note that the function T , easily taken as “temperature,” has been scaled to unity

at y = 0, as have the dimensions of the square.

The formal solution is presented below, with admittedly many skipped steps.

Specifically, if we look for an orthogonal function expansion of the form

T (x, y) =
∑

n

sinnπx
(

An e
nπy +Bn e

−nπy
)

,

and apply the boundary conditions, we find that

1 =
∑

n

(An +Bn) sinnπx,

0 =
∑

n

(

An e
nπ +Bn e

−nπ
)

sinnπx.

Note that the zero boundary conditions at x = 0, x = 1 are already satisfied, in

that only sinnπx, not cosnπx, are included in the sum; this is indeed one of the

skipped steps. In fact, right now we’ll refer to B&B’s Equation (2.80) (but make

oh-so-sure to note that in Figure (2.2), positive is down. Oops.) to cite the result

An +Bn =
4

nπ
, n odd; An +Bn = 0, n even.

The boundary condition at y = 1 gives each term in the sum identically zero, or

An e
nπ +Bn e

−nπ = 0, all n.
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It is now possible to solve for the formal solution. As promised, several steps

are about to be skipped, but the result may be expressed as

T (x, y) =
4

π

∑

n odd

1

n sinhnπ
sinnπx sinh (nπ(1− y)) ;

note that because An = Bn = 0 identically for n even, the sum is over n odd only.

A contour plot of the first 50 terms is shown below. The Gibbs phenomenon is

clearly seen at (x = 0, y = 0) and (x = 1, y = 0).

At this point, both from the figure and by invoking some hindsight, if we had

solved the same problem with the boundary conditions

T (0, 0) , T (0, 1) = 1,

which is completely equivalent, with y → 1−y, we could then seek a formal solution
of the form

T (x, y) =
∑

n

Cn sinnπx sinhnπy,
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resulting in

Cn sinhnπy =
1

4π n
, n odd; Cn = 0, n even,

leading of course to the same result.

So, where does a Sommerfeld-Watson transformation come in? Often, when

determination of the above formal series solution is assigned as a problem, an aux-

iliary part is to “Find T (1/2, 1/2).” Okay, let’s try. It will help to use the double-

argument expression for hyperbolic sine,

sinhnπ = 2 sinhnπ/2 coshnπ/2

(remember where you saw it first) to find, formally,

T

(

1

2
,
1

2

)

=
2

π

∑

n odd

1

n

sinnπ/2

coshnπ/2
.

To evaluate this beast, consider the function

f(z) =
1

z

1

cos zπ/2

1

cosh zπ/2

and evaluate the residues of f(z). Without going into too much detail (this is

complex analysis), a non-zero residue is obtained at any point a in the complex

plane where f(z) is singular, and is equal to the (non-zero) coefficient of 1/(z − a)
in the Laurent series expansion of f(z) about a (you may want to look this up) if

the series exists (not all do).

Anyway, our function f(z) is singular at the origin (a gimme), all odd integers

(positive and negative) and, here’s the kicker, at all odd integer multiples of i; recall

cos(iη) = cosh η and cosh(iη) = cos η (remember, we use
√
−1 = i in this class).

A calculation that is not simple, but far from prohibitively difficult, shows that

for each positive integer, the residue is exactly the negative of the corresponding

term we need, and yes, the residue vanishes at positive even integers (f(z) is not

singular at these points). The residues at the corresponding negative values are the

same. By the way, the factor of π/2 in 1/(cos zπ/2) pops into the residues, as seen

by taking the Laurent Series, and takes care of the 2/π in the sum we want (see

below). We’re that good.

The great thing is the residues at the integral multiples of i give exactly the

same result. So, we take the sum of all of these residues and divide by 4 and set

this equal to the negative of the residue at the origin. Why we can do this is, again,
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a result of complex analysis, although it’s strongly related to Green’s Theorem in

the plane. The residue at the origin is the easiest to calculate, and is equal to just

plain 1. Thus, our sum is equal to a very simple 1/4, one of our favorite rational

numbers.

So, that’s neat, but what’s the very large deal? Well, if we just wanted to

give the answer to the temperature in the center of the plate, we would only need

to invoke symmetry. That is, redo the problem where T = 1 everywhere on the

boundary of the square (trivially, T = 1 everywhere in the interior for this bound-

ary), argue that the temperature in the center for our problem therefore has to be

a quarter of this, and we’re done.

If this all sounds too hifalutin’, recall that in the notes Some Sums, we did

the same sort of thing, in that we found Fourier Series for functions that could be

evaluated easily at special points, equated the values to the corresponding sums,

and then declared that we had found the desired sums. Well, all of those sums

could be found by Sommerfeld-Watson transformations as well, but we let it go.

You make the call.

The Residue We’ve Always Wanted

For integer n, let δ = z − nπ/2. The introduced variable δ need not be small,
but no other residues of f(z) should be within |δ| of n. Simple trig gives

cos
zπ

2
= cos

[

nπ

2
+
δπ

2

]

= − sin nπ
2
sin
δπ

2
.

The reciprocal of this expression appears in f(z), and another fairly simple

calculation gives

1

sin δπ/2
=
2

δπ
+ T (δ),

where T (δ) is a Taylor Series in δ (not to be confused withe original T (x, y)). Thus,

the residue of f(z) at z = n is exactly the term of the formal sum that we need.
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