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Normality of Modes of Discrete Coupled Oscillators

As you recall, we rederived French’s result as given in Equation 5-26 on

page 141,

Ap,n = Cn sin

(
pnπ

N + 1

)
.

We have seen that for the N independent modes, we may restrict n to be any integer

from 1 to N . What we wish to show is that these relative amplitudes satisfy our

criterion for normality,
N∑
p=1

Ap,n Ap,m = 0

if n 6= m. This necessary result actually follows readily upon use of tricks &

trigonometry. To show orthogonality, we may take Cn = 1, so consider

N∑
p=1

Ap,nAp,m =

N∑
p=1

sin

(
pnπ

N + 1

)
sin

(
pmπ

N + 1

)

=
1

2

N∑
p=1

[
cos

(
n+m

N + 1
πp

)
− cos

(
n−m

N + 1
πp

)]

=
1

2

N∑
p=1

[
<
{
ei
n+m
N+1 πp

}
− <
{
ei
n−m
N+1 πp

}]

=
1

2
<

{
N∑
p=1

(
ei
n+m
N+1 π

)p
−
N∑
p=1

(
ei
n−m
N+1 π

)p}
.

Note the fancy “<” to denote “real part of”. The two sums are geometric series;

we know that for any α, real or imaginary,

N∑
p=1

αp =

{(
αN+1 − α

)
/ (α− 1) , α 6= 1,

N α = 1.

For this situation, let

α+ = e
in+mN+1 π, α− = e

in−mN+1 π .

If n+m is even, n−m is even, and αN+1+ = αN+1− = 1, so

N∑
p=1

αp+ =

N∑
p=1

αp− = −1,
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and the quantity in braces vanishes. If n+m and n−m are odd, αN+1+ = αN+1− = −1,

and
N∑
p=1

αp+ =
−1− α+
α+ − 1

,

N∑
p=1

αp− =
−1− α−
α− − 1

.

These terms are actually quite easily handled; anticipating a result that we will

see in B&B Chapter 8, a more useful method to show that if α = eiθ, with θ real,

the ratio (α+ 1)/(α− 1) is imaginary. To do so, note that

α+ 1

α− 1
=
eiθ + 1

eiθ − 1
=
e−iθ/2

e−iθ/2
·
eiθ + 1

eiθ − 1
=
eiθ/2 + e−iθ/2

eiθ/2 − e−iθ/2

=
cos(θ/2)

i sin(θ/2)
= −i cot(θ/2).

At this point, note that the case α = 1, so that θ = 0 or 2π (or any integer multiple

of 2π) has been precluded, so sin θ/2 = 0 won’t happen. Also, since θ is real, tan θ/2

is real, and our needed result is

<

{
α+ 1

α− 1

}
= 0.

The above results, showing that (α+1)/(α−1) is imaginary if αα∗ = 1, may be

seen graphically by plotting the pertinent complex quantities in the complex plane,

as shown (the circle is the unit circle). The only tricky part, and it’s not that tricky,

is to see that the vectors representing α + 1 and α − 1 are perpendicular. This is

seen by noting that the origin and the endpoints of α+1 and α−1 lie on a circle of

unit radius centered at the endpoint of α, and that the vector joining the endpoints

of α+ 1 and α− 1 is a diameter of that circle.
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The orthogonality of the modes may also be demonstrated algebraically, start-

ing with (
ω2 − 2ω20

)
Ap + ω

2
0 (Ap+1 + Ap−1) = 0,

where A0 = AN+1 = 0.

Consider the above set of equations for two different modes:

(
ω2m − 2ω

2
0

)
Ap,m + ω

2
0 (Ap+1,m + Ap−1,m) = 0(

ω2n − 2ω
2
0

)
Ap,n + ω

2
0 (Ap+1,n +Ap−1,n) = 0.

Multiplying the first of these equations by Ap.n, the second by Ap,m and summing

over p gives

N∑
p=1

[(
ω2m − 2ω

2
0

)
Ap,mAp,n + ω

2
0 (Ap+1,mAp,n + Ap−1,mAp,n)

]
= 0

N∑
p=1

[(
ω2n − 2ω

2
0

)
Ap,nAp,m + ω

2
0 (Ap+1,nAp,m + Ap−1,nAp,m)

]
= 0,

and subtracting the equations and rearranging gives

N∑
p=1

Ap,mAp,n
(
ω2m − ω

2
n

)
+

N∑
p=1

(Ap+1,mAp,n −Ap−1,nAp,m)ω
2
0+

N∑
p=1

(Ap−1,mAp,n −Ap+1,nAp,m)ω
2
0 = 0.

Now, note that since A0,m = A0,n = AN+1,m = AN+1,n = 0,

N∑
p=1

Ap+1,mAp,n = A2,mA1,n + A3,mA2,n + . . .+ AN−1,mAN−2,n +AN,mAN−1,n

=

N∑
p=1

Ap,mAp−1,n.

Similarly,
N∑
p=1

Ap−1,mAp,n =

N∑
p=1

Ap,mAp+1,n,
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leaving
N∑
p=1

Ap,mAp,n
(
ω2m − ω

2
n

)
= 0.

If the system has no degenerate modes (i.e., each mode has a different frequency),

the modes are orthogonal.

The above is a special case, but not too special, of a result from linear alge-

bra that is often used by physicists without apology, that “the eigenvectors of a

Hermitian operator corresponding to distinct eigenvalues are orthogonal”. In this

case, the Hermitian operator would be the matrix corresponding to the original

equations, and this matrix would be Hermitian because its elements are real and

the matrix is symmetric. The symmetry appears because the terms Ap+1 and Ap−1

appear with the same coefficient of ω20 , and this coefficient is the same in all of

the equations. (The fact that it is the same in all equations is a manifestation of

Newton’s second law.)

A more general (but not completely general) situtation is discussed in the notes

Coupled Linear Oscillators.
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