8.03 at ESG Supplemental Notes
More on Cyclotron Fields

Equation 1.128 in B&B, and hence Eq. 1.129, is not as general as it could be.
Arbitrary electric fields can be considered.

First, some notational things. I'd like to use ¢’ as a dummy integration variable.
This is a situation where the circumstances will be needed to recognize that t' is
a dummy variable, not a derivative. Also, I'd like to allow for the possibility that
the electric field has both an z- and a y-component, E = E, 2+ FE, 9, and then let
€= %ﬁ Recall that w,, the cyclotron frequency, is %. The equations of motion
are then

Up = €5 + Wely, Uy = €y — Wclyg.

Denote the initial values of the velocity components (which we won’t really need,
but let’s be complete) as v;(0) = vz0, vy (0) = vyo.
Now, similar to what was done in the text, by differentiating the first equation

and substituting into the second we get a single equation, second order, for v,;
Vg + wfvx = €z + Wcey.

The solution, which may be found any number of ways (see any differential equations

text, or ask), is
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Note that in the last term, 0;(0) = agz0 = €,(0) + wevyo.
The first term may be integrated by parts;
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so that the result is

¢
Vy = / [cos(wet — wet') €, (t) + sin(wet — wet') €, ()] dt’
0
+ Vz0 COS Wl + vy SIN Wt.

A similar result holds for v,.
The above may be summarized very cleanly by use of matrix calculus. Sparing

the details (although you are encouraged to check),
t
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where M is a matrix,
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The matrix M(#) has many amazing properties. It can be shown that

M(0) = exp (RA), where R = {_(1) (1)} ,
and the exponentiation of a matrix is done via a series expansion. To be amazed,
note that the eigenvalues of M and R are +i, M(0) = I, the identity matrix,
M(m/2) = R, 90 = RM, and M(a)M(3) = M(a + 3). M rotates a vector by

the angle #, and R is known as the generator of rotations in the plane.



