A Bit of Math Regarding Critical Damping

In lecture last week (February 7), in introducing critical damping, Prof.
van Oudenaarden alluded to a crucial result from the mathematicians; specfically,

the solutions to the differential equation
i4+yi+wiz =0, ()
in the case where wy = % has (real) solutions of the form

7,
z(t)=(A+Bt)e 2 .

This result was presented without derivation, and indeed the derivation is a very
useful element of any differential equations class, but not really necessary for 8.03
purposes.

A casual glance at the DE texts on my shelf ( Differential Equations: A Modeling
Approach by Borrelli & Coleman, Elementary Differential Equations with Boundary
Value Problems by Edwards & Penney and FElementary Differential Equations with
Boundary Value Problems by Boyce & Di Prima. Why does it always take two
authors, and aren’t there other title names available?) show three different ways of
showing the above result. I’d like to include a fourth, more motivated by physics.

Consider an object whose motion is described by &, subject to the initial
conditions xz(0) = 0, ©(0) = wvg, in the two cases wg > 7/2 (underdamped) and
wo < 7v/2 (overdamped). For the underdamped case, the solution to &, with the

initial conditions, can be shown (that means you do it) to be

Vo

_7y
z(t) = — (e 2 ) sin (wt) , (©)

w

where w? = w@ — (v/2)® (w is real for the underdamped case).
Now, let’s consider what happens when w approaches zero (that is, when wq

approaches 7/2). Rewrite () as

. sin(w
z(t) =vot (e 2t> ( t). (")

Here’s the tricky part, and it’s not too tricky: For any time ¢, the product wt

will approach zero as w approaches zero. If we wanted to be more mathematically
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rigorous (and we don’t), we would need to address “uniform convergence;” check
Principles of Mathematical Analysis by Walter Rudin (that’s the 18.100B text) for

details. So, let’s give the product wt a name, for our purposes ¢; in the limit as w

y .
z(t) = vo (t e_gt) sin(e)

7,
—vote 2,

approaches zero, we have

where the standard result
. sin(e)
lim

e—0 €

—1 (@)

has been used.

The result given in (©) may be shown in many ways. If you used Calculus and
Analytic Geometry by George Simmons, a geometric derivation is on Pages 71-72.
If you’ve seen and appreciated I’'Hopital’s Rule, (O) follows from a simple (really, I

get to use the word “simple”) application. From the Taylor Series for sin(e),

sin(e) e ¢
e T lTmtytoo

from which (©) follows without apology.

For the overdamped case, v/2 > wp, so w would be imaginary. Although we
could deal with w imaginary, that would be more math than physics (see below).

In any event, it takes a few steps to show that
gl ) (7 ) Y
—|zt¢&)t —=—-¢)t ——t
z(t) = ;—% —e (2 ¢ +e \2 ¢ _ 0 (e 2 ) sinh(&t),

where £, the unprouncable Greek lowercase “xi”, is & = 1/(v/ 2)2 —w3. For the

overdamped case, £ is real.
By the same methods as above (but the geometric exposition is far trickier), it

can be shown that nh(€ 1)
sin
lim ——— =1
LTI »

reproducing
y

z(t) =vote 2 .



The graphs below are plots of x(t) for different values of € or n = £ t, scaled to
v =2 and vy = 1. The plot that has the circles is z(t) = t e, the limit as e = n = 0.
The reason the circled plot are hard to see is that the curves for e =n = 1/10 is so
close to the limiting case that the curves become indistinguishable, which is sort of

the whole point of doing this.

Some of you have seen that sin(je) = j sinh(e), which is completely consistent

with the above result. This is typical of much of what happens in physics; get used
to it.



