
A Bit of Math Regarding Critical Damping

In lecture last week (February 7), in introducing critical damping, Prof.

van Oudenaarden alluded to a crucial result from the mathematicians; specfically,

the solutions to the differential equation

ẍ+ γ ẋ+ ω20 x = 0, (♣)

in the case where ω0 =
γ

2
has (real) solutions of the form

x(t) = (A+B t) e
−
γ

2
t
.

This result was presented without derivation, and indeed the derivation is a very

useful element of any differential equations class, but not really necessary for 8.03

purposes.

A casual glance at the DE texts on my shelf (Differential Equations: A Modeling

Approach by Borrelli & Coleman, Elementary Differential Equations with Boundary

Value Problems by Edwards & Penney and Elementary Differential Equations with

Boundary Value Problems by Boyce & Di Prima. Why does it always take two

authors, and aren’t there other title names available?) show three different ways of

showing the above result. I’d like to include a fourth, more motivated by physics.

Consider an object whose motion is described by ♣, subject to the initial

conditions x(0) = 0, ẋ(0) = v0, in the two cases ω0 > γ/2 (underdamped) and

ω0 < γ/2 (overdamped). For the underdamped case, the solution to ♣, with the

initial conditions, can be shown (that means you do it) to be

x(t) =
v0
ω

(
e
−
γ

2
t
)

sin (ωt) , (♦)

where ω2 = ω20 − (γ/2)
2

(ω is real for the underdamped case).

Now, let’s consider what happens when ω approaches zero (that is, when ω0

approaches γ/2). Rewrite (♦) as

x(t) = v0 t

(
e
−
γ

2
t
)

sin(ωt)

(ωt)
. (♦′)

Here’s the tricky part, and it’s not too tricky: For any time t, the product ωt

will approach zero as ω approaches zero. If we wanted to be more mathematically
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rigorous (and we don’t), we would need to address “uniform convergence;” check

Principles of Mathematical Analysis by Walter Rudin (that’s the 18.100B text) for

details. So, let’s give the product ωt a name, for our purposes ε; in the limit as ω

approaches zero, we have

x(t) = v0

(
t e
−
γ

2
t
)

sin(ε)

ε

→ v0 t e
−
γ

2
t
,

where the standard result

lim
ε→0

sin(ε)

ε
= 1 (♥)

has been used.

The result given in (♥) may be shown in many ways. If you used Calculus and

Analytic Geometry by George Simmons, a geometric derivation is on Pages 71-72.

If you’ve seen and appreciated l’Hôpital’s Rule, (♥) follows from a simple (really, I

get to use the word “simple”) application. From the Taylor Series for sin(ε),

sin(ε)

ε
= 1−

ε2

3!
+
ε4

5!
+ · · · ,

from which (♥) follows without apology.

For the overdamped case, γ/2 > ω0, so ω would be imaginary. Although we

could deal with ω imaginary, that would be more math than physics (see below).

In any event, it takes a few steps to show that

x(t) =
v0

2 ξ


−e−

(γ
2

+ ξ
)
t

+ e
−
(γ

2
− ξ
)
t


 =

v0

ξ

(
e
−
γ

2
t
)

sinh(ξ t),

where ξ, the unprouncable Greek lowercase “xi”, is ξ =
√

(γ/2)
2 − ω20 . For the

overdamped case, ξ is real.

By the same methods as above (but the geometric exposition is far trickier), it

can be shown that

lim
ξ→0

sinh(ξ t)

ξ t
= 1, (♠)

reproducing

x(t) = v0 t e
−
γ

2
t
.
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The graphs below are plots of x(t) for different values of ε or η = ξ t, scaled to

γ = 2 and v0 = 1. The plot that has the circles is x(t) = t e−t, the limit as ε = η = 0.

The reason the circled plot are hard to see is that the curves for ε = η = 1/10 is so

close to the limiting case that the curves become indistinguishable, which is sort of

the whole point of doing this.

Some of you have seen that sin(jε) = j sinh(ε), which is completely consistent

with the above result. This is typical of much of what happens in physics; get used

to it.
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