

A Bit of Math Regarding Critical Damping

In lecture last week (February 7), in introducing critical damping, Prof. van Oudenaarden alluded to a crucial result from the mathematicians; specifically, the solutions to the differential equation

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0, \quad (\clubsuit)$$

in the case where $\omega_0 = \frac{\gamma}{2}$ has (real) solutions of the form

$$x(t) = (A + Bt) e^{-\frac{\gamma}{2}t}.$$

This result was presented without derivation, and indeed the derivation is a very useful element of any differential equations class, but not really necessary for 8.03 purposes.

A casual glance at the DE texts on my shelf (*Differential Equations: A Modeling Approach* by Borrelli & Coleman, *Elementary Differential Equations with Boundary Value Problems* by Edwards & Penney and *Elementary Differential Equations with Boundary Value Problems* by Boyce & Di Prima. Why does it always take two authors, and aren't there other title names available?) show three different ways of showing the above result. I'd like to include a fourth, more motivated by physics.

Consider an object whose motion is described by \clubsuit , subject to the initial conditions $x(0) = 0$, $\dot{x}(0) = v_0$, in the two cases $\omega_0 > \gamma/2$ (underdamped) and $\omega_0 < \gamma/2$ (overdamped). For the underdamped case, the solution to \clubsuit , with the initial conditions, can be shown (that means you do it) to be

$$x(t) = \frac{v_0}{\omega} \left(e^{-\frac{\gamma}{2}t} \right) \sin(\omega t), \quad (\diamondsuit)$$

where $\omega^2 = \omega_0^2 - (\gamma/2)^2$ (ω is real for the underdamped case).

Now, let's consider what happens when ω approaches zero (that is, when ω_0 approaches $\gamma/2$). Rewrite (\diamondsuit) as

$$x(t) = v_0 t \left(e^{-\frac{\gamma}{2}t} \right) \frac{\sin(\omega t)}{(\omega t)}. \quad (\diamondsuit')$$

Here's the tricky part, and it's not too tricky: For any time t , the product ωt will approach zero as ω approaches zero. If we wanted to be more mathematically

rigorous (and we don't), we would need to address "uniform convergence;" check *Principles of Mathematical Analysis* by Walter Rudin (that's the 18.100B text) for details. So, let's give the product ωt a name, for our purposes ϵ ; in the limit as ω approaches zero, we have

$$\begin{aligned} x(t) &= v_0 \left(t e^{-\frac{\gamma}{2}t} \right) \frac{\sin(\epsilon)}{\epsilon} \\ &\rightarrow v_0 t e^{-\frac{\gamma}{2}t}, \end{aligned}$$

where the standard result

$$\lim_{\epsilon \rightarrow 0} \frac{\sin(\epsilon)}{\epsilon} = 1 \quad (\heartsuit)$$

has been used.

The result given in (\heartsuit) may be shown in many ways. If you used *Calculus and Analytic Geometry* by George Simmons, a geometric derivation is on Pages 71-72. If you've seen and appreciated l'Hôpital's Rule, (\heartsuit) follows from a simple (really, I get to use the word "simple") application. From the Taylor Series for $\sin(\epsilon)$,

$$\frac{\sin(\epsilon)}{\epsilon} = 1 - \frac{\epsilon^2}{3!} + \frac{\epsilon^4}{5!} + \dots,$$

from which (\heartsuit) follows without apology.

For the overdamped case, $\gamma/2 > \omega_0$, so ω would be imaginary. Although we could deal with ω imaginary, that would be more math than physics (see below). In any event, it takes a few steps to show that

$$x(t) = \frac{v_0}{2\xi} \left(-e^{-\left(\frac{\gamma}{2} + \xi\right)t} + e^{-\left(\frac{\gamma}{2} - \xi\right)t} \right) = \frac{v_0}{\xi} \left(e^{-\frac{\gamma}{2}t} \right) \sinh(\xi t),$$

where ξ , the unpronounceable Greek lowercase "xi", is $\xi = \sqrt{(\gamma/2)^2 - \omega_0^2}$. For the overdamped case, ξ is real.

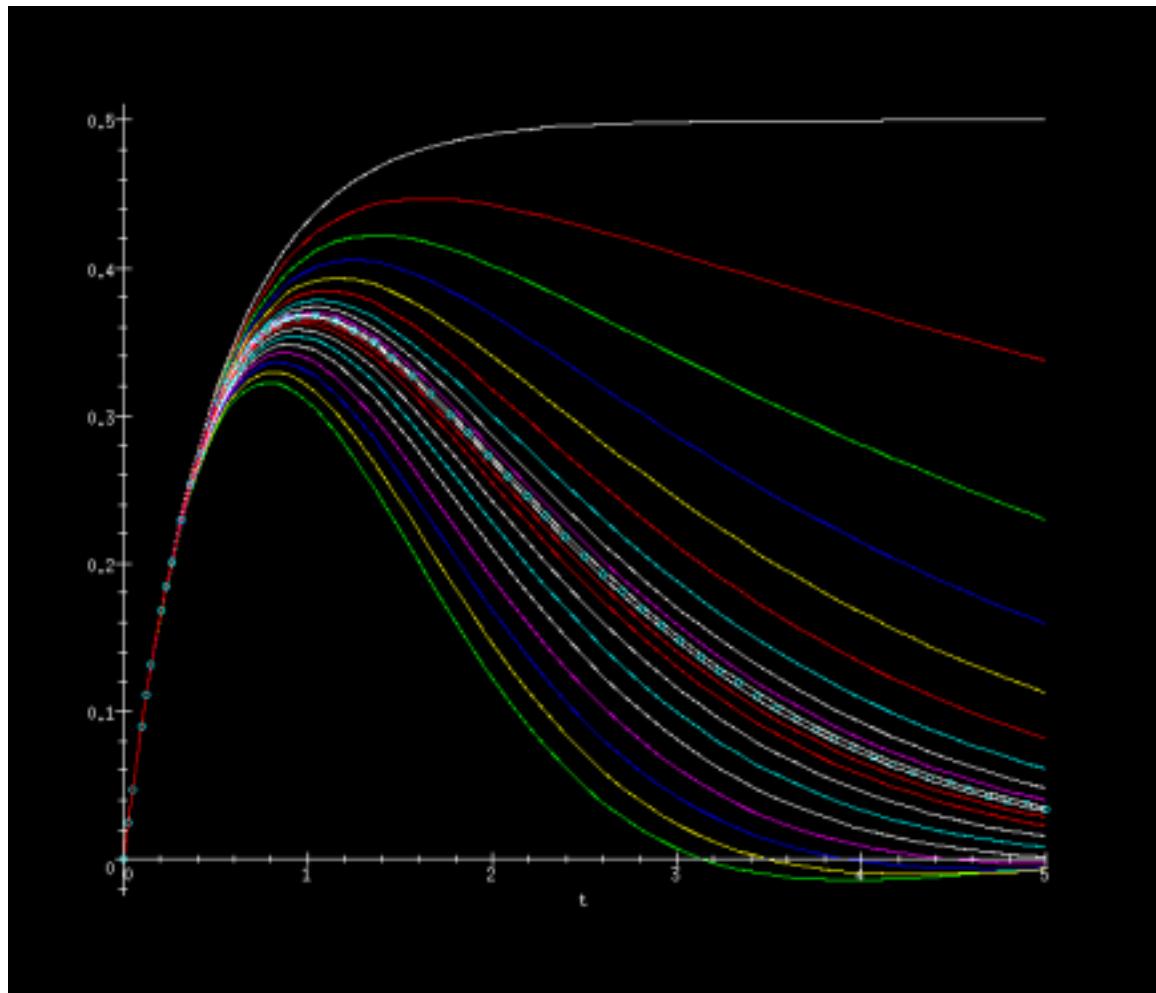
By the same methods as above (but the geometric exposition is far trickier), it can be shown that

$$\lim_{\xi \rightarrow 0} \frac{\sinh(\xi t)}{\xi t} = 1, \quad (\spadesuit)$$

reproducing

$$x(t) = v_0 t e^{-\frac{\gamma}{2}t}.$$

The graphs below are plots of $x(t)$ for different values of ϵ or $\eta = \xi t$, scaled to $\gamma = 2$ and $v_0 = 1$. The plot that has the circles is $x(t) = t e^{-t}$, the limit as $\epsilon = \eta = 0$. The reason the circled plot are hard to see is that the curves for $\epsilon = \eta = 1/10$ is so close to the limiting case that the curves become indistinguishable, which is sort of the whole point of doing this.



Some of you have seen that $\sin(j\epsilon) = j \sinh(\epsilon)$, which is completely consistent with the above result. This is typical of much of what happens in physics; get used to it.