
A Periodic Delta-“Function”

as a

Sum of Complex Exponentials

An object under consideration is

lim
N→∞

N
∑

k=−N

e2πi kt.

This is refered to as an “object” because the limit does not exist as a function, but

is rather a “distribution.” That is, a proposed equivalent form is

lim
N→∞

N
∑

k=−N

e2πi kt =
∞
∑

n=−∞

δ (n− t) ,

and like all δ-“functions,” this object must be judged by what it does to other

functions, as opposed to any explicit functional form.

For the purposes of examining the behavior as N → ∞, consider the partial

sum

FN (t) =

N
∑

k=−N

e2πi kt.

Several properties of FN (t) are immediately clear:

• FN (t) is perodic with period 1,

• FN (t) is an even function of t, and

• FN (0) = 2N + 1.

As a consequence of the first property, the remainder of these notes will consider

only the range −12 ≤ t ≤
1
2 .

It should be clear that FN (t) is a geometric series, and so may be found in

closed form;
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FN (t) =

N
∑

k=−N

e2πi kt

= e−2πiNt
2N
∑

m=0

(

e2πi t
)m

= e−2πiNt
e2πi(2N+1) t − 1

e2πi t − 1

= e−2πiNt
eπi(2N+1) t

[

eπi(2N+1) t − e−πi(2N+1) t
]

eπi t [eπi t − e−πi t]

=
sin ((2N + 1)π t)

sin (π t)

for t non-integral. For t integral, the periodicity of FN (t) gives FN (t) = 2N + 1.

The nature of FN (t) may be examined by simple plots; a MAPLE worksheet may

be downloaded from the 8.03-ESG web page.

To see how FN (t) might be considered a δ-distribution in the limit N → ∞,

consider
∫ 1/2

−1/2

FN (t) dt = 2

∫ 1/2

0

sin ((2N + 1)π t)

sin (π t)
dt.

Make the substitution

u = (2N + 1)π t, dt =
du

(2N + 1)π
,

so that
∫ 1/2

−1/2

FN (t) dt = 2

∫ (N+1/2)π

0

sinu

(2N + 1)π sin (u/(2N + 1))
du.

In the limit as N → ∞, the upper limit of the integral goes to infinity, giving an

improper definite integral, while the denominator of the integrand approaches π u,

as may be checked using l’Hôpital’s Rule. The result is that
∫ 1/2

−1/2

FN (t) dt −→
2

π

∫

∞

0

sinu

u
du.

This integral is well-known to many, but may be derived by use of a Tauberian

Parameter. What follows is from the 18.023 texts, Calculus: an Introduction to

Applied Mathematics by Greenspan, Benney and Turner, Page 533, or Calculus: an

Introduction to Applied Mathematics by Greenspan and Benney, Page 514. Specif-

ically, consider the improper definite integral
∫

∞

0

e−a u sinu du, a > 0.
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This integral may be done by many means, both foul and fair, to obtain
1

a2 + 1
.

Then,
∫

∞

0

e−a u sinu

u
du = −

∫

da

[
∫

∞

0

e−a u sinu du

]

+ C

= C − tan−1(a).

The constant of integration is found by taking a → ∞, in which case the integral

with respect to u on the left above must be 0, and so C = π
2 , and taking a→ 0,

∫

∞

0

sinu

u
du =

π

2
.

Thus, we have

lim
N→∞

∫ 1/2

−1/2

FN (t) dt = 1,

a necessary candidate for any representation of the δ-distribution.

Now, the fact is that the above representation does not have the property that

the limit converges to 0 uniformly as N → 0 for nonintegral t. That is, consider

the first maximum of |FN (t)| (or, equivalently, (Fn(t))
2
) that occurs at a value of

t > 0. It can be shown by basic calculus that this value of t, call it tmax, is the least

positive solution of the transcendental (or is it?) equation

tan (π t) =
1

2N + 1
tan ((2N + 1)π t) .

This solution may be found numerically for a givenN , or graphically. The advantage

to the graphical solution is that it is seen that as N → ∞, the least positive value

of t that is an intersection of the graphs of the two functions is at (2N +1)π t ∼ 3π
2
,

giving tmax ∼
3
4N .

Two such graphs, for N = 5, are given in plots linked from the page that gave

these notes. In the first, with the expanded scale, the intersection at t ∼ 0.13 can

be seen (MAPLE gives this point as 0.1304, to larger precision if desired), similar

to the crudely predicted value of 3/22 ∼ 0.1364. The second plot shows that the

successive extrema occur essentially at the places where the graph of
tan (11 π t)

11
diverges. (MAPLE’s plotting algorithm results in having these asymptotes more or

less drawn in by default.)

For N large, then,

FN (tmax) ∼ −
4N

3π
,

∣

∣

∣

∣

FN (0)

FN (tmax)

∣

∣

∣

∣

∼
3π

2
.
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We can interpret this as having the “peaks” in FN (t) be roughly proportional to

N , but with alternating signs, and coming closer together as N becomes large.

(This property is also seen from the cited MAPLE worksheet.) Thus, any integral

of FN (t), mulitplied by any well-behaved fuction, will have any contributions away

from the principle peaks at integral t “wash out,” leaving only the area in the region

of the principle peaks, shown above to be 1, times the value of the function at these

values. This is indeed the desired property of the δ-“function.”

To be slightly more rigorous, consider the prior derivation of the integral over

one period, but multiplied by a well-behaved (for our purposes, continuous) func-

tion f(t);

∫ 1/2

−1/2

f(t)FN(t) dt = 2

∫ 1/2

0

f(t)
sin ((2N + 1)π t)

sin (π t)
dt

= 2

∫ (N+1/2)π

0

f (u/(2N + 1)π)
sinu

(2N + 1)π sin (u/(2N + 1))
du

→
2

π

∫

∞

0

f(0)
sinu

u
du

= f(0)
2

π

∫

∞

0

sinu

u
du

= f(0),

where the same substitution, u = (2N + 1)π t, has been made. This shows that

lim
N→∞

FN (t) has the proper integral property, even though FN does not converge

uniformly to 0 for nonintegral t.
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