
More on Low-Temperature Fermions -

a Reconsideration of Baierlein’s Equation (9.15)

The use of δε ∼ “a few kT” can be made a bit better. Consider Figure 9.3 on

Page 187, and take the slope of the diagonal part of the curve to be

df

dε

∣∣∣∣
ε=εF

= −
1

4 kT
.

Then, a simple “rise over run” gives

−
1

4 kT
=
−1

2 δε
−→ δε = 2 kT ;

the coefficient of 9/4 in the line preceding Equation (9.15) becomes unity, quite

close to ζ(2) = π2

6 .

To find the variation with the exact version of the Fermi distribution f(ε),

replace the last two terms in Equation (9.14) with the integrals;

∫ ∞
µ(T )

D(ε)f(ε) dε−

∫ µ(T )
0

D(ε)(1− f(ε)) dε.

Noting that the only substantial contribution to either integral is in the region of

integration very close to ε = µ(T ) allows us to use a first-order Taylor Series forD(ε)

about ε = µ(T ) and to extend the range of the second integral from −∞ to µ(T ).

Of course, D(ε) is not defined for ε < 0, and the Taylor Series approximation is far

from valid, but f(ε) is defined in this range, and will be exponentially small; we

haven’t changed the value of the integral in any substantial way.

Using Baierlein’s notation, the integrals combine to give

D (εF)

[∫ ∞
µ(T )

f(ε) dε−

∫ µ(T )
−∞

(1− f(ε)) dε

]

+D′(εF)

[∫ ∞
µ(T )

(ε− µ(T )) f(ε) dε−

∫ µ(T )
−∞

(ε− µ(T )) (1− f(ε)) dε

]
.

Make the change of variable x = (ε− µ(T ))/kT to obtain

D (εF) kT

[∫ ∞
0

dx

ex + 1
−

∫ 0
−∞

ex dx

ex + 1

]

+D′(εF) (kT )2
[∫ ∞
0

x dx

ex + 1
−

∫ 0
−∞

x ex dx

ex + 1

]
.

1



Make the further change of variable x → −x in the second integral in each

line above, so that all four integrals are from 0 to +∞; the first two integrals,

those multiplying D (εF), cancel, while those in the second line add, giving a net

correction of

2D′(εF) (kT )2
∫ ∞
0

x dx

ex + 1
.

The last integral is similar to those discussed in Appendix A of the text, except

for the presence of a + sign in the denominator. However, the improper inte-

gral certainly converges, and a quick consultation with MAPLE (or some other

symbolic-manipulation program) does indeed give the integral as π2/12, which leads

to Equation (9.15).

To see how this integral is obtained (this is math now - we’ve done the physics),

follow the same steps as in Equation (A7), Page 422, arriving at a sum with alter-

nating signs,

∫ ∞
0

x dx

ex + 1
=

(
∞∑
n=1

(−1)n−1

n2

)
×

∫ ∞
0

e−y y dy =
∞∑
n=1

(−1)n−1

n2
.

Express the sum as

∑
n odd

1

n2
−
∑
n even

1

n2
=
∑
alln

1

n2
− 2

∑
n even

1

n2

=
∑
alln

1

n2
− 2×

1

4
×
∑
alln

1

n2

=
1

2

∑
alln

1

n2
=

1

2
ζ(2) =

π2

12

where the well-known result for ζ(2) has been used. Of the many ways to see this

sum, see, for instance, the notes Some Sums, linked from the 8.03-esg page.
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