
8.03 at ESG Supplemental Notes

Larmor Radiated Power

(Note: for ease of typesetting and reading, for these notes vectors will be denoted

by boldface instead of overarrows. F’rinstance, v instead of �v.)

B&B equation 4.13 can be written as

PL =
q2 a2

6πε0c3
=

q2

6πε0mc3
ma2 = τ ma2,

where τ = q2/6πε0mc
3 is a parameter, with dimensions of time, which may be

calculated for any particle. F’rinstance, for an electron, proton and neutron,

τe = 6.265× 10−24 s

τp = 3.411× 10−27 s

τn = 0 (heh, heh).

The Larmor power PL is the rate at which an accelerated charge loses energy. PL

exists only when an acceleration exists, and only for charged particles. Suppose we

model the radiation as being due to a radiative force Fr; PL = −Fr · v, with the

minus sign indicating that energy is lost.

We can find Fr in terms of the energy lost in a given time;∫
PL dt = −

∫
Fr ·v dt =

∫
τm v̇·v̇ dt, so

∫
Fr ·v dt = −τm

∫
v̇·v̇ dt

= −τm v̇·v+ τm

∫
v·v̈ dt,

where the last step is an integration by parts. Consider the first term on the right

in the last expression; v̇ · v = a · v is to be evaluated between the initial and final

times. If we have i) a = 0 initially and finally, or ii) a ⊥ v (as in circular motion!),

or iii) periodic motion, this term will vanish, and we have

∫
Fr ·v dt = τm

∫
v̈·v dt.

Our identification of PL with a radiative force then requires that Fr = τmv̈.

(At this point, mathematicians might see where we’ll run into trouble.)
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Now, suppose we try to cause an acceleration by application of an external

force Fe; then,

ma = F = Fe + Fr = Fe + τmȧ.

Rewrite this as a− τ ȧ = Fe/m, and let u ≡ a e−t/τ (an integrating factor), so

u̇ = ȧ e−t/τ −
1

τ
a e−t/τ

=
1

τ
e−t/τ [τ ȧ− a]

=
1

τ
e−t/τ

[
−
Fe
m

]
.

Integrating (that’s what integrating factors do),

u(t) = −
1

mτ

∫ t
C1

Fe(t
′) e−t

′/τ dt′,

a(t) = −
1

mτ

∫ t
C1

Fe(t
′) e(t−t

′)/τ dt′,

where C1 is a constant of integration, with which we will deal later. Now, let

s = (t′ − t)/τ , so t′ = t+ τs, dt′ = τ ds, and

a(t) = −
1

m

∫ 0
C2

Fe(t+ τs) e
−s ds =

1

m

∫ C2
0

Fe(t+ τs) e
−s ds.

If τ = 0, a = Fe/m, but

a(t) =
1

m

∫ C2
0

Fe(t) e
−s ds =

Fe
m

∫ C2
0

e−s ds.

The requirement that
∫ C2
0
e−s ds = 1 gives us C2 =∞, and so

a(t) =
1

m

∫ ∞
0

Fe(t+ τs) e
−s ds.

Well, so what? Well, we see that this relation would tell us that the acceleration at

time t depends on the force at later times. Some of us are bothered by this.
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For example: let Fe = F x̂, vy = vz = 0. If

F (t) =

{ 0, t < 0,
F0, 0 ≤ t ≤ T
0, t > T ,

use of the above form for the acceleration gives ax(t) in the form shown. In the

plots, the time t is given as a fraction of T , and T = 10τ has been used.
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The acceleration begins before the force is applied, and the maximum acceler-

ation, at t = 0, is (F0/m)
[
1− e−T/τ

]
.

Another example, which we will want later, is a sinusoidal force, such as F =

F0 cosωt. In this case (you will do the integral sooner or later in an assignment),

a =
F0

m

cos (ωt+ δ)
√
1 + ω2τ2

,

where δ = tan−1 ωτ . Again, a depends on F at future times, and |a| < |F0|/m.

At this point, you may have to choose for yourself which part of physics has

betrayed us. Mathematically, we have introduced a force which depends on accel-

eration, so our equations of motion are no longer merely second-order. One way of

looking at the situation physically is to consider how we could apply the force “at

time t” when we have an extended object. You might start by comparing the time

τ for certain objects to the distance light can travel during that time (we will do

this later).

B&B use the above result in a manner that hides the difficulty, but we’re not

afraid. For a more detailed discussion, including limitations on the validity of the

above result, see Jackson’s Classical Electrodynamics, pages 796-798.
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