8.03 at ESG Supplemental Notes

Plasma Oscillations

As mentioned in lecture today (Friday, April 25), the dispersion relation for
electromagnetic waves in a plasma may be obtained either by regarding the displace-
ment of the electrons as contributing to the polarization vector P or by regarding
the motion of the electrons as part of a conduction current. These notes show that
treating the electrons as free electrons subject to the oscillating electric field and
the resulting motion as a conduction current yields the same dispersion relation as
obtained in the given solutions to Problem 48.

For these notes, the relative permeability will be taken to be unity (ky = 1)
and the motion of the electrons will be modeled as a conduction current, so that
kg will be taken to be 1. The number of electrons per unit volume will be N (some
texts use m, but that symbol is overused already). Vectors will be boldface italic
with an overarrow (or hat for units vectors).

The current density 7 isin general then
? = Nqv = —Ne,

where ¢ = —e for electrons has been used. The motion of the electrons, for @
uniform, does not change the overall electrical neutrality of the plasma, so the
charge density is p = 0. (Note that this is not the case for the optional part (g)
of Problem 48.) Equations (6.27) on Page 413 then reduce to a form similar to
Equations (6.36) on Page 421, summarized here:

V.E =0 (a)
VXE = _0B (b)

ot

V’x]?’ 2#060%—#0]\767 (c)

V-B=o. (d)

There are many ways to proceed from here. For the purposes of finding the disper-
sion relation, the most direct is to take the curl of both sides of (b), using the fact

that the divergence of E vanishes, to obtain
__vE o _vx(?B)__2
Y (IxF) - v - Ix (57 ) -5 (V).
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where the equality of mixed partials has been used without apology. Taking the

time derivative of (c) and substituting the above, and using E? = ", the electron

acceleration, yields
82
V2f = ,uoe()ﬁf — poNea. &

At this point, it’s easiest to use the form for the electric field given in Prob-
lem 48,
F = Eq cos(wt — kz)&.

Finding the vector Laplacian is straightforward, and VQE} - _*E. Sim-
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ilarly, F = —w?E. The acceleration @ is, from Newton’s Second Law,

at?
@ = (—e¢/ m)f Combining these in & and using jgeg = 1/c? gives

(—k2A)E = (- E + <Z—i> 7,

which can only be valid if

Ne?
Ak =0 - — :wz—wﬁ,

the same dispersion relation obtained previously.
The same result may be obtained from Equation (6.42) if the conductivity o

is properly interpreted. With kg = xky = 1, that relation becomes

2
w .
k% = 2 Jwhoo

and was derived for an electric field of the form given in Equation (6.38), which is,

with a minor change in notation,
E = Egeliwt=k2) g

Use of Equation (6.42) necessitates a relation between F and 7 and hence between

F and 7. Finding the acceleration as above and integrating,

()E ()

This gives a conductivity that is purely imaginary, ¢ = —jNe?/wm, and substitu-

tion into Equation (6.42) while counting minus signs very carefully gives
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Two things (at least) should be noted in the above use of the conductivity o:
First, it may seem that the direction of propagation of the wave might matter.
This is not the case; if ﬁ = FEoel(—wt=k2) ¢ were used, for instance, instead of
Equation (6.38), then the conduction term in Equation (6.42) would be +jwpornmo,
with the plus sign instead of the minus. When integrating the expression for the
acceleration to find the velocity, @ = @ /(—jw), and the minus sign is recovered.

The above is a special case of that considered in the text leading up to Equa-
tion (6.71) on Page 445. Note that in that equation, the sign of the charge does not
matter; which we call “positive” or “negative” should not matter in this case, and

it doesn’t.



