
8.03 at ESG Supplemental Notes

Plasma Oscillations

As mentioned in lecture today (Friday, April 25), the dispersion relation for

electromagnetic waves in a plasma may be obtained either by regarding the displace-

ment of the electrons as contributing to the polarization vector
→
P or by regarding

the motion of the electrons as part of a conduction current. These notes show that

treating the electrons as free electrons subject to the oscillating electric field and

the resulting motion as a conduction current yields the same dispersion relation as

obtained in the given solutions to Problem 48.

For these notes, the relative permeability will be taken to be unity (κM = 1)

and the motion of the electrons will be modeled as a conduction current, so that

κE will be taken to be 1. The number of electrons per unit volume will be N (some

texts use n, but that symbol is overused already). Vectors will be boldface italic

with an overarrow (or hat for units vectors).

The current density
→
J is in general then

→
J = Nq→v = −Ne→v ,

where q = −e for electrons has been used. The motion of the electrons, for →v

uniform, does not change the overall electrical neutrality of the plasma, so the

charge density is ρ = 0. (Note that this is not the case for the optional part (g)

of Problem 48.) Equations (6.27) on Page 413 then reduce to a form similar to

Equations (6.36) on Page 421, summarized here:

→
∇·
→
E = 0 (a)

→
∇×
→
E = −

∂
→
B

∂t
(b)

→
∇×
→
B = µ0ε0

∂
→
E

∂t
−µ0Ne→v (c)

→
∇·
→
B = 0. (d)

There are many ways to proceed from here. For the purposes of finding the disper-

sion relation, the most direct is to take the curl of both sides of (b), using the fact

that the divergence of
→
E vanishes, to obtain

→
∇×

(→
∇×
→
E
)
= −∇2

→
E = −

→
∇×

(
∂
→
B

∂t

)
= −

∂

∂t

(→
∇×
→
B
)
,
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where the equality of mixed partials has been used without apology. Taking the

time derivative of (c) and substituting the above, and using
d

dt
→v =→a , the electron

acceleration, yields

∇2
→
E = µ0ε0

∂2

∂t2
→
E − µ0Ne→a . ♣

At this point, it’s easiest to use the form for the electric field given in Prob-

lem 48,
→
E = E0 cos(ωt− kz)x̂ .

Finding the vector Laplacian is straightforward, and ∇2
→
E = −k2

→
E . Sim-

ilarly,
∂2

∂t2
→
E = −ω2

→
E . The acceleration →a is, from Newton’s Second Law,

→a = (−e/m)
→
E . Combining these in ♣ and using µ0ε0 = 1/c2 gives

(−k2c2)
→
E = (−ω2)

→
E +

(
Ne2

mε0

)
→
E ,

which can only be valid if

c2k2 = ω2 −
Ne2

mε0
= ω2 − ω2p,

the same dispersion relation obtained previously.

The same result may be obtained from Equation (6.42) if the conductivity σ

is properly interpreted. With κE = κM = 1, that relation becomes

k2 =
ω2

c2
− jωµ0σ

and was derived for an electric field of the form given in Equation (6.38), which is,

with a minor change in notation,

→
E = E0e

(jωt−kz)x̂ .

Use of Equation (6.42) necessitates a relation between
→
E and

→
J and hence between

→
E and→v . Finding the acceleration as above and integrating,

→a =

(
−e

m

)
→
E , →v =

(
−e

jωm

)
→
E .

This gives a conductivity that is purely imaginary, σ = −jNe2/ωm, and substitu-

tion into Equation (6.42) while counting minus signs very carefully gives

k2 =
ω2

c2
− µ0

(
Ne2

m

)
=
ω2

c2
−
1

c2

(
Ne2

ε0m

)
= (1/c2)

(
ω2 − ω2p

)
.
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Two things (at least) should be noted in the above use of the conductivity σ:

First, it may seem that the direction of propagation of the wave might matter.

This is not the case; if
→
E = E0e

j(−ωt−kz)x̂ were used, for instance, instead of

Equation (6.38), then the conduction term in Equation (6.42) would be +jωµ0κMσ,

with the plus sign instead of the minus. When integrating the expression for the

acceleration to find the velocity,→v =→a /(−jω), and the minus sign is recovered.

The above is a special case of that considered in the text leading up to Equa-

tion (6.71) on Page 445. Note that in that equation, the sign of the charge does not

matter; which we call “positive” or “negative” should not matter in this case, and

it doesn’t.
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