
8.03 at ESG Supplemental Notes

Some Sums

We can start with the result presented in B&B Page 175; we’ll use f(z) =

s(z, 0) = s0(z).
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With this form for Am, it is easily seen that Am = 0 for m even, and we can get a

neat result in one fell swoop; note that
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and that if you massage this properly (i.e., shift the origin and turn Fig. 2.22 upside

down), you get something like Equation 2.80. In any event,
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Note that this is the Taylor Series for arctan(1) about z = 0. This is the age-old (at

least as old as Newton) method of finding π numerically; it works, but it converges

quite slowly. It also shows that π is irrational, if you had any doubts.

Next, we use a trick known to the mathematicians as the “energy theorem”,

a name which acknowledges their debt to physics. What we do is square f(z),

integrate from 0 to L, and compare the results. The function as graphed may be

squared easily and integrated to give a2L/3. In terms of the Fourier series expansion,∫ L
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As we have seen, the integral in the last expression vanishes if n 6= m, and is L/2 if

n = m, so
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so we have
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We can still do more; we have
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and we then have
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This last sum will be useful later on when we do quantum mechanics; indeed,

such sums, known as “Riemann-zeta functions” appear often in physics. You may

note that from Sum #1 we can get
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