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1 Introduction

We have spent the first part of 8.05 setting up the kinematic and dynamical
framework of quantum physics. We have developed a structure that is much
more general than wave mechanics. Now is a good time to work through
examples of operator quantum mechanics to solidify our understanding. For-
tunately many beautiful and relatively modern applications of quantum me-
chanics involve the time development of systems where only two quantum
states are important. A two-dimensional Hilbert space is so simple that
all of the properties of these systems can be displayed analytically without
approximation. Such systems are not only of pedagogical interest. Many
interesting modern developments in quantum theory and applications to the
real world involve systems where the restriction to two quantum states is
natural. In these notes we introduce the general description of two state
systems using the ammonia molecule as an example.

Applications to nuclear magnetic resonance, the ammonia maser, neutrino
oscillations, and the physics of kaons, will soon follow.

2 General formalism

Suppose we can isolate and focus on two states of a quantum system to the
exclusion of all others. It might be that the system only has two states.
The classic example is the intrinsic spin of an electron or proton, a purely
quantum mechanical label that takes on only two values: 4+ or —. Or it
might be that all other degrees of freedom of the system are “frozen out”,
requiring much more energy to excite. An example is the configuration of the
ammonia molecule, NHs, where the nitrogen sits either above (+) or below
(—) the plane formed by the three hydrogens. Excitations that rearrange the
molecule in more significant ways or ionize it require much more energy than
is required to flip the nitrogen from + to —.



Whatever the reason, we shall assume that our Hilbert space is spanned by
two basis states, |+) and |—), that we assume to be orthonormal, (£|+) = 1,
(£|F) = 0 and complete, >, _ 4 |i)(i| = I, where I is the identity operator.

2.1 Hamiltonian

In isolation this system is described by a constant Hamiltonian with eigen-
values E.. For simplicity we assume H is diagonal in the |£) basis. If it
weren’t we would find its eigenvectors, change to that basis and rename those

states + and —. We can choose the zero of energy so that the eigenvalues of
H are +e/2,

€
H|t) = ii‘i>' (1)
From this we can construct the matriz elements of H in this basis,

(E|H|E) = i%
EHF) = 0 2)

2.2 General Observable

Any quantity of physical interest must be associated with a hermitian op-
erator, A. To find the matrix reprentation of A in the £ basis we use
completeness,

A = L |¢><¢|}A ZIJ)UI]
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The operator |i)(j| transforms state j into state i. If we represent the state
1 N . .
|+) by <O> and |—) by (?) then [i)(j| is represented by the matrix with

zeros everywhere except a 1 in the ith row and jth column. Let us define
(i|A]j) = a;j. Then we conclude that the operator A is associated with the
matrix

A:>(Cl11 &12) (4)
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in the £+ basis. For example, H is associated with the matrix
H= (2 5. (5)
0 =3

With respect to a given basis an operator is represented by a (2 x 2) ma-
trix. When we want to emphasize the difference between the operator and its
matrix representation we will use the = symbol as in (5). Usually, however,
we will be less precise and relate operators to their matrix representations
with equal signs.

Returning to the most general physical observable, hermiticity restricts
the {a;;} by aj; = a;;. Without loss of generality we can definte a, = ag+as,
a__ =ag—ag, ay_ = ay — 10y, and a_, = ay + iag, Where ag, a1, as and as
are four real constants:

A:><a0+a3 Gl—iag)’ (6)

ay +tas  ag — as

So the operator A has been replaced by a set of four c-numbers — a consid-
erable simplification.

2.3 Pauli Matrices

When Pauli first encountered matrices of this form in the study of spin, he
defined a set of standard 2 X 2 hermitian matrices now known as the Paul:

matrices,
0 1 0 —1 1 0
"1_(1 0) “2_<z‘ 0) "3_<0 —1) (7)
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a complete set of 2 x 2 hermitian matrices. [They are a maximal linearly
independent set.] They are normalized so that Tr o7 = 2, where Tr denotes
the matrix space.

Using the Pauli matrices, H can be written

The Pauli matrices together with the identity matrix I = <

H = gag (8)



and our arbitrary observable can be written

A:>CL0[+C_L"O_3, (9)
i.e.
3
(i| Alj) = aods; + Y aror; (10)
k=1

Note that we can use a vector notation for the sum over the three ¢ matrices.
This looks like a mere convenience, an accident of the fact that there are three
non-trivial 2 x 2 Hermitian matrices, allowing us to make use of a familiar
notation. Later, we will encounter examples where & and @ do refer to three-
dimensional vectors, and when we study the general behavior of two state
systems more thoroughly we will see that the analogy goes still deeper.

The Pauli matrices have many simple properties that make it very conve-
nient to use them in the manipulation of operators. First, their commutators
and anticommutators are very simple:

o, 08] = 2igjpeoe
{O‘j,O’k} = 26yk (11)
where we use the summation convention that repeated indices are assumed
to be summed over the labels 1, 2, and 3.! Also, {A, B} = AB + BA is the

anticommutator. The derivation of these relations is left to the problems.
From (11) it follows that

b+io-axb, (12)
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b-&=2id-bxFé (13)

Sometimes it is useful to introduce non-hermitian combinations of the Pauli
matrices. If we define oy = \%(01 +i0,), then

-0 =a40_+a_o4 + azo3 (14)

16JM is the Levi-Civita symbol defined by €123 = 1 and by the fact that it changes sign
when any pair of its indices are exchanged. Thus €913 = €321 = —1 and € = 0 if any two
indices are the same.



where ay = %(al +iay). The commutation relations of the set {04, 03} are
easily derived,

[0’3,0&] = :i:ZO'i
[0y, 0] = 203. (15)

Unitary matrices constructed as exponentials of the Pauli matrices have
particularly simple properties. If we define M(a) by

M(@) = expid-d

2 '3
= 1+i6-5+%(6-6)2+%(6-5)3+... (16)
then it is easy to show that
M(a@) = Icosa+id - asina, (17)

where a = |d| and @ = d/a. We leave the derivations of these results to the
problems and leave any further ones to the point that we need them.

2.4 Time Dependence of an Isolated Two State System

The time development of an isolated system (one in which the Hamiltonian
does not depend explicitly on the time) is generated by the unitary operator,

Ut) = e Mt (18)

Suppose [¢) (= |¥)g = |1(0))g) is an arbitrary state defined as a superpo-
sition of the fixed basis vectors |+) at time t = 0. Then in accordance with
our discussion of Heisenberg and Schroediner pictures, we define,

Vn = ar]+) +a|-)
[P(t)s = U)P(0))s
= ar()]+) +a-()]-) (19)

ay and a_ define the state at time ¢ = 0. In the Schroedinger picture they
evolve with time by the action of U(t) — ax(t) = e¥/%a.

It is particularly easy to follow the time dependence of observables in
the Heisenberg picture. Let A be an arbitrary observable defined by the
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c-number constants ag,---as, a la (9). The general relation between an
operator in Schroedinger picture, Ag and Heisenberg picture, Ag(t) is given
by

AH(t) — 6th/hASe—th/h (20)

or in this case,

ict L et
en%(agl + @ - &)e”2n%

A% (@10 + agoy)e” M, (21)

= CLOI+CL30'3—|—€

where \ = et/2h. It is possible to carry out the operator algebra exactly in
this case. We define,

Ye(A) = 7o e (22)
SO
d¥ NP Nor: —1iAos
d—)\k = "oy, opleN?
= _2€3k]’2j' (23)

Specifically, d¥;/d\ = —2%5 and d¥s/d\ = 2%;. Using the initial values
Y, (0) = oy, it is easy to integrate these coupled first order (matrix) equations,

Y1(A) = 01c082)\ — g98in 2\
Yo(A) = 09c082\ + 0y sin 2\ (24)

Thus we have found the time dependence of the most general operator:

Ap(t) = apl + azos + ai(oq cos %t — 09 8in %t) + as (o9 cos 6—; + 0 sin %t) (25)
Let us analyse this result. The piece of an operator proportional to the
identity, ag, labels both states the same way and is of no interest to us. It
may be regarded as an overall property of the system that does not vary in
the problem at hand. The piece proportional to o3 commutes with H, so it
labels the two energy eigenstates differently and distinguishes between them.
The pieces of A proportional to o; and oy vary sinusoidally in time with a
frequency determined by the energy difference between the two eigenstates.
We are now ready to look at a few simple examples of two state systems.



3 Ammonia Molecule 1

The presentation here follows the discussion in Feynman’s Lectures on Physics,
Volume III, §9. Ammonia (/N H3) forms a tetrahedral structure where the ni-
trogen atom sits above or below the plane formed by the three hydrogen
atoms. When all other degrees of freedom (electronic, vibrational, rota-
tional) are in their respective ground states, the NHj3 molecule still has
two distinct configurations: |+) — when the N is above the plane of the
H;, and |—) — when it is below. Since the two configurations are re-
lated by mirror reflection in the plane of the hydrogens, it is not surpris-
ing that the expectation value of the energy is the same in the two states:
(+|H|+) = (—|H|-) = E;. However, atomic interactions mix the two
states.? Without any information about the interaction we can nonetheless
summarize it by a single parameter, A, the magnitude of the off-diagonal
matrix element of H, (+|H|—) = (=|H|+) = —A. We can choose the phase
of the states so that A is real.?

In Nature A is small. It is much smaller than the energy required to excite
electronic, vibrational or rotational degrees of freedom (which require optical,
infrared and far-infrared photons respectively). A corresponds to excitations
in the microwave part of the electromagnetic spectrum, a frequency of A/h =~
24,000 Megacycles, corresponding to a wavelength of ~ 1.25 cm.

In the {£} basis, H is represented by the matrix,

(26)

(5 2)

-A  Ey
Clearly |+) and |—) are not energy eigenstates. It is easy to see that |1,2) =

%(H—) F |—)) are eigenstates of (26) with eigenvalues Ey + A respectively.
So in the new basis, H has the form described in the previous section,

H = Eol + o3A. (27)

As an example of an observable, let us choose the probability to observe
the system in the state |4+) minus the probability to find it in the state |—)

2A nice example of the quantum mechanical phenomenon of tunnelling: the nitrogen
atom sits stablely on either side of the hydrogen plane, but has a small amplitude to tunnel
through the plane where it would be classically forbidden.

3Note, we have chosen the phase of the states so that (+|H|—) is negative. This is
merely a convenience. You should convince yourself that we have the freedom to do this.
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divided by the sum, which is unity. Our first job is to find the operator
corresponding to this observation. Let us call the operator A. We know its
expectation value in any state. If the state is [¢)) = ay|+) + |a_|—) then the
expectation value is (¢| A1) = |ay|* — |a_|*. An operator that does the job
is A = [|+)(+]] = [|=)(—]]- Since this choice works for any state, it is unique.
In matrix terms

A= o, (28)

in the {4} basis.

We are now faced with a simple example of a common problem: the
Hamiltonian for this system is simple (represented by a diagonal matrix —
or diagonal for short) is one basis, while the operator of interest is diagonal
in another. We have to choose one basis or the other. Let’s choose to work
in the {1,2} basis. We use m,n for {1,2} state labels and 4, j for {£} state
labels. We need (m|A|n), where m,n are either 1 or 2. Inserting complete
sets [ =, |0)(i], we get

(mlAln) =Y > (mli)(i|Al7)(j|n) (29)

i=%4 j=%

The matrix (j|n) defines the unitary transformation from the + basis to the
{1,2} basis. Since the basis states are related by

n = =+ -1

2) = (0 +1-), (30)

-l

we can read off the matrix elements of the matrix 7;, = (j|n)

T:%(_ll 1) (31)

Substituting this definition of (j|n) in terms of 7 back into (29) we obtain
the matrix representation of A in the {1, 2} basis,

A:>TT037:(71. (32)



To find the time dependence of A we substitute into (24), *

A(t) = oy cos 28t o9 sin 281 (33)
h h

To find out the time dependence of the asymmetry in any state we take the
expectation value of the Heisenberg operator, (33), in the (time independent)
Heisenberg state. .4 vanishes in an energy eigenstate, (1,2[.A4]1,2) = 0 as it
must. So the energy eigenstates populate the up and down configurations
equally. If, however, we prepare a state in the up configuration at ¢t = 0,
|+), then the asymmetry oscillates with time, (+[A(t)[+) = cos 22L. One
virtue of the Heisenberg picture is that the entire range of time evolution
of operator matrix elements is manifest in the Heisenberg operator. It is
easy, for example, to construct an initial state that selects out the SiHQTAt
term in (33). We will return to the ammonia molecule after exploring several

relatively simple and interesting two-state problems.

41 have gone through this example of changing an operator representation from one basis
to another in lots of detail to provide an illustration of the general methods discussed in
lecture.



