Computer Vision with MATLAB

Master Class

Bruce Tannenbaum
Agenda

- Introduction
- Feature-based registration
 - Automatic image registration
 - Rotation correction with SURF
 - Stereo image rectification
- Video processing with System objects
 - Tracking cars with optical flow
- Classification
 - Texture classification
 - Face detection
- Summary
Examples of Computer Vision with MATLAB
Computer Vision

Using images and video to detect, classify, and track objects or events in order to “understand” a real-world scene

Image Processing
- Remove noise
- Adjust contrast
- Measure
 ...

Computer Vision
- Detect
- Identify
- Classify
- Recognize
- Track
 ...

Interpretation
- Pedestrian
- Bicyclist
- Truck
- Car
- Traffic violation
- Accident
 ...
Typical Computer Vision Challenges

- Variable lighting conditions
- Unknown scene depth or perspective
- Background clutter
- Partially hidden objects (occlusion)
- Differences in scale, location, and orientation
Technical Computing with MATLAB

Access
- Files
- Software
 - Code and Applications
- Hardware

Explore and Discover
- Data Analysis and Modeling
- Algorithm Development
 - For k=1:max
 - x = fft(data)
 - y = 20*log10
- Application Development

Share
- Reporting and Documentation
 - PDF
 - .doc
 - .html
- Outputs for Design
- Deployment
 - MATLAB
 - Excel
 - .NET
 - C/C++
 - Java
 - .dll
Key Products for Computer Vision

- Computer Vision System Toolbox - NEW
- Image Processing Toolbox
- MATLAB
- Statistics Toolbox

- Additionally…
 - Image Acquisition Toolbox
 - MATLAB Coder
 - Parallel Computing Toolbox
Computer Vision System Toolbox

Design and simulate computer vision and video processing systems

- Feature detection
- Feature extraction and matching
- Feature-based registration
- Motion estimation and tracking
- Stereo vision
- Video processing
- Video file I/O, display, and graphics
Demo: Feature-Based Registration

- **Workflow**
 - Feature detection
 - Feature extraction
 - Feature matching
 - Geometric transformation estimation with RANSAC
Demo: Rotation Correction with SURF

- **Workflow**
 - Feature detection
 - Feature extraction
 - Feature matching

![Matching points (inliers only)](image1)

Image courtesy of Massachusetts Institute of Technology
Demo: Stereo Image Rectification
Recovering Scene Depth with Stereo Cameras
Epipolar Geometry
Fundamental Matrix

\[X_L^T F X_R = 0 \]
Video Processing

- Video file I/O and display
- Video pre-processing
- Motion estimation and analysis
Motion Estimation and Analysis

- Techniques
 - Block matching
 - Optical flow
 - Template matching
 - Background estimation using Gaussian mixture models

- Applications
 - Object tracking
 - Interpolation
 - Compression
Demo: Using Optical Flow to Track Cars

- Video file I/O and display
- Video preprocessing
- Motion estimation
- Segmentation and analysis
Useful System Objects for Video File I/O, Display, and Graphics

- **File I/O**
 - VideoFileReader
 - VideoFileWriter

- **Display**
 - VideoPlayer
 - DeployableVideoPlayer

- **Graphics**
 - AlphaBlender
 - MarkerInserter
 - ShapeInserter
 - TextInserter
Useful System Objects for Video Preprocessing and Statistics

- **Preprocessing**
 - ChromaResampler
 - Deinterlacer
 - DemosaicInterpolator

- **Statistics (running across video frames)**
 - Histogram
 - Maximum
 - Mean
 - Median
 - Minimum
 - StandardDeviation
 - Variance
Different Interfaces, Different Benefits in Computer Vision System Toolbox

<table>
<thead>
<tr>
<th>Audience</th>
<th>Functions</th>
<th>System Objects</th>
<th>Simulink Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm developers</td>
<td>• Application-specific algorithms and tools</td>
<td>• Algorithms that maintain state</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Efficient video stream processing</td>
<td></td>
</tr>
<tr>
<td>System designers</td>
<td></td>
<td>• Fixed-point modeling</td>
<td>• Multidomain modeling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• C-code generation</td>
<td>• Real-time system design</td>
</tr>
<tr>
<td>Implementers</td>
<td></td>
<td></td>
<td>• Target-specific embedded hardware</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• HIL, PIL</td>
</tr>
</tbody>
</table>
Typical Parts of a Computer Vision Algorithm

1. Image/video acquisition
2. Image/video pre-processing
3. Feature detection
4. Feature extraction
5. Feature matching
6. Using features
 - Stabilization, mosaicking
 - Stereo image rectification
7. Feature classification

Image Acquisition Toolbox
Image Processing Toolbox
Computer Vision System Toolbox
Statistics Toolbox
Challenge: Accurate Classification is Hard

How can a computer tell that these are all chairs?
Demo: Texture Classification

- Identify features appropriate for classification
- Extract features for training and test data
- Train classifier with features
- Test classifier and analyze results

- Using KTH-TIPS database

Demo: Face Detection
Statistics Toolbox

Perform statistical analysis, modeling, and algorithm development

- Clustering
 - Principle components analysis
 - K-means
 - Gaussian mixture models

- Classification
 - Naïve Bayes
 - K-nearest neighbor search
 - Boosted decision trees
 - AdaBoost, GentleBoost, LogitBoost,…
Key Products for Computer Vision

- Computer Vision System Toolbox - **NEW**
- Image Processing Toolbox
- MATLAB
- Statistics Toolbox

- Additionally…
 - Image Acquisition Toolbox
 - MATLAB Coder
 - Parallel Computing Toolbox
Why Use MATLAB for Computer Vision?

- Comprehensive environment
 - Analysis, algorithm development, visualization, etc.

- Broad library of algorithms
 - Computer vision
 - Image processing
 - Classification and clustering

- Documentation, examples, and technical support

- Increased productivity over C/C++ programming
For More Information

- mathworks.com/products/computer-vision
- Relevant demos:
 - Barcode Recognition
 - Image Rectification
 - Traffic Warning Sign Recognition
 - People Tracking
 - Video Mosaicking
- Documentation
- Contact your sales representative
Questions and Answers