

Introduction to Object-Oriented Programming in MATLAB

Jamie Winter Sr. Account Manager

Abhishek Gupta Application Engineer

Agenda

- Object-oriented programming
- Basic object-oriented programming syntax in MATLAB
- Classes in MATLAB

What is a program?

Data

```
x = 12
while (x < 100)
    x = x+1
    if (x == 23)
        disp('Hello')
    end
end</pre>
```

Code

```
x = 12
while (x < 100)
    x = x+1
    if (x == 23)
        disp('Hello')
    end
end</pre>
```

```
Assignment
Looping Test
Increment
Test to Act
Take Action
End
End
```

Actions

Progression of Programming Techniques

Example: Sensor Array

- Transmitting a signal from a weather balloon
- Locating the signal with a sensor array
- Computing the angle of arrival (AoA) for the signal

Procedural Programming

- Easy to learn
- Minimal planning
- There is no formal relationship between data and functions.
- Every detail is exposed.

Data and Actions to Implement

Data Actions

Related Data and Actions

Determine peaks

Sensor

Compute FFT peaks

Compute FFT Plot results

Plot result

Synthesize measurements

Synthesize measurements

Data Actions

Grouping Related Data and Actions

Data Class Actions

Progression of Programming Techniques

Object-Oriented Terminology

- Class
 - Outline of an idea
 - Properties (data)
 - Methods (algorithms)
- Object
 - Specific example of a class
 - Instance

Defined set – *class*

Agenda

Object-oriented programming

 Basic object-oriented programming syntax in MATLAB

Classes in MATLAB

Demonstration: Building a Simple Class

- Define a class for our radar blips
- Create the weather balloon object
- Use the object in place of the structure

Objects

- Are easy to create
- Manage their own data
- Are interchangeable with a structure
 - No other code changes are required.
 - Properties behave similar to field names.
 - Fields can't be added arbitrarily.

Demonstration: Adding Methods to a Class

- Start from a sensor class with existing properties
- Add a method to compute angle of arrival (AoA)
- Integrate a sensor object into the existing code

Objects with Methods

- Have immediate access to their own data (properties)
- Allow you to overload existing functions
- Allow you to perform custom actions at creation and deletion

10

19

20 -

21 22

```
classdef blip
                         %BLIP Class for representing a target
                           A blip class knows its angle, signal and range
                         % Copyright The MathWorks, Inc. 2008, 2010
                         properties ...
                         methods
                             function obj = blip(AoA, range, signal)
                                 if nargin == 3
             16
                                     AoA.rdo
                                                 = AoA
             17
                                     obj.range = range ;
             18
                                     obj.signal = signal;
             19
                                 end
                             end
                                                                   _ | D | X
📝 C:\00_Programming\3 - Adding Methods\master\analyzeData_final.m
      Text Go Cell Tools Debug Desktop Window Help
      □ %% Compute Angles of Arrival
         arrivalAngles
                                  = staringArray.AoA(balloon)
         disp(arrivalAngles)
                                                     Ln 19
                                                             Col 1
```


Agenda

- Object-oriented programming
- Basic object-oriented programming syntax in MATLAB

Classes in MATLAB

Taking Methods and Properties Further

- Control access
- Create constants
- Make values interdependent

Execute methods when properties change

Demonstration: Applying Attributes

Control access

Access = public
Access = protected

Restrict modification

Constant Dependent

Encapsulation

Encapsulation

Using a Class as a Building Block

All Radar Blips

Demonstration: Creating a Moving Target

- Define a new class for moving blips
- Inherit from the existing class for blips
- Add a method
- Use the moving blip

Inheritance

- Subclass substitutes for the superclass
- Allows re-envisioning and re-implementing the superclass
- Builds on proven code

```
classdef movingBlip < blip</pre>
            %MOVINGBLIP Summary of this class goes here % . . . %
            % Copyright The MathWorks, Inc. 2008, 2010
            properties
                deltaAoA
            end
            methods
                function obj = movingBlip(deltaAoA, vararqin)
13
                    % assign the superclass portion
14
                    obj = obj@blip(varargin{:}) ;
                    if nargin >= 1...
16
21
                function move (obj) ...
33
34
            end
       end
```

Allows inheriting from the base MATLAB classes

Object-Oriented Programming in MATLAB

- Class definition file describes object behavior
- Objects can substitute for structures
- Apply attributes for a clean interface
- Build on existing classes with inheritance

Extends the matrix-based language to objects

Additional Resources

Questions and Answers