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PREPARATORY PROBLEMS

1. Derive from first priciples the differential equation for damped, simple, harmonic mo-
tion. Derive the solution.

2. Compute the exact moment of inertia of two identical solid spheres of mass m and
diameter d connected by a rod of mass y and length [ about an axis perpendicular to
the rod.

3. Suppose the pendulum is at rest with the lead balls in rotated clockwise. Sketch the
expected curve of angular displacement versus time from the moment when the balls
are rotated counterclockwise.

1 INTRODUCTION

According to Newton, two spherically symmetric bodies, A and B, with inertial masses, M4
and Mp, attract one another with a force of magnitude GMTA% where r is the separation
between the centers and G is the universal constant of gravity. The determination of G is
obviously of fundamental importance in physics and astronomy. But gravity is the weakest
of the forces, and the measurement of the gravity force between two bodies of measurable
mass requires a delicate approach, with meticulous care to reduce perturbing influences such
as air currents and electromagnetic forces.

The first measurement of G was made by Henry Cavendish in 1798, a century after Newton’s
discovery of the law of universal gravitation. He used a torsion balance invented by one Rev.
John Michell and, independently, by Charles Coulomb. Michell died shortly after completing
his device, never having had the opportunity to apply it to the measurement of small forces
for which he had devised it. It was passed on to Professor John Wollaston of Cambridge
University and eventually to Cavendish who improved it and used it in a painstaking series
of experiments to measure the mean density of the earth from which the value of G is
readily derived. For the earth’s mean density he found the value 5.48 g cm™2 with a stated
uncertainty of 1 part in 14, which implies a value for G of (6.7040.48)x10~® dynes cm? g~2.
The current best value is (6.67259 & 0.00085)x10~® dynes cm? g~ . The large uncertainty,
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128 ppm, compared to that of any of the other fundamental constants such as the elementary
charge (0.30 ppm) and Planck’s constant (0.60 ppm) reflects the fact that even today it is
difficult to achieve an accurate measurement of G.

Our common experience with gravity is the weight of things. If A is an apple and E is the
earth, then the weight of A is Wyg = GJV][{AQME = gM 4, where Rp is the radius of the earth

and g is the acceleration of gravity. The lat)?cer two quantities can be measured easily to high
accuracy (how?). Thus if you could measure Mg then you could determine G, or vice versa.
It is clearly impossible to measure Mg as you do ordinary things, i.e. by direct comparison
with a standard weight on a balance. The only recourse is to replace the earth with a body
B that can be measured directly, and to measure the force Wy it exerts on the test body
A. Suppose the radius of B is Rp and its density is pp so that Mp = 4nR%pp/3. Then if
r= RB, we find WAB = 47TGMARB,OB/3.

To get an idea of the practical difficulties that must be overcome in the measurement we
can estimate the ratio of the force between a lead ball and a small test body at its surface
to the force of earths gravity on the test body. The radius of the earth is 6.371x10% cm. We
can use Cavendish’s value for the earth’s mean density. If the radius of the lead ball is 3 cm
and its density is 11.3 g cm™2, then the ratio of forces is %—Ag = BgB ~ 1078, Thus he had
to measure a force on a test body that was about one hundred- mllhonth of its weight!

The torsion balance in the Junior Lab is shown schematically in Figure 1. It consists of a
horizontal brass beam on the ends of which are two brass balls each of of mass m separated
by a distance [ between their centers, as shown in detail in Figure 2. The beam is suspended
from its balance point by a fine tungsten wire which allows the beam to rotate about a
vertical axis, subject to a restoring torque that is proportional to the angular displacement,
0 , of the beam from its equilibrium position. The idea of the experiment is to measure the
angular twist A6 of the beam when two lead balls, each of mass M, are shifted from the
positions labeled 1 to the positions labeled 2. If the distance between the center of each
brass ball to the center of the nearest lead ball in both configuration 1 and 2 is called b,
then the angular twist is

2GMml
A= ——— 1
= (1)
where k is the torsion constant. To measure the torsion constant we turn to the equation of
motion of the pendulum which is

d*0 K db
P AT @

where [ is the moment of inertia of the pendulum, and 3 is the coefficient of damping. With
the initial condition 6;—y = 0 the solution to equation (2) is

0(t) = QOe*%sm(wt) (3)
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Figure 1: Schematic diagram of the torsion pendulum used in the
Cavendish measurement of G
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ball diameter = 0.952 +- 0.005 cm
density of brass = 8.45g cm-3
ball separation = 11.75 +- 0.10 cm

ball mass=3.82+-0.1¢g
rod mass = 1.63 g

laser beam rod diameter = 0.157 +- 0.005g

copper pipe inside diameter = 2.47 +- 0.01cm

Figure 2: Details of the torsion balance baem, showing the two small brass
balls mounted on the ends of a brass rod and suspended at the middle by
a tungsten wire inside the 1/2” pipe.
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where

Kk  (?
=TT ()

Equation (3) describes a damped harmonic motion about an equilibrium orientation with a
period 7' = 27 /w and a characteristic damping time of 2/4 In a typical setup this damping
time is more than twice the period so that to a good approximation xk = I (2%)2 If the beam
is light compared to the brass balls, the moment of inertia is given to fair accuracy by the
formula [ = mTZQ Finally, one can determine the angular displacement caused by shifting
the lead balls by measuring the angular deflection A¢ = 2A0 of a laser beam reflected from
a mirror mounted on the beam of the torsion pendulum. Substituting these quantities into
equation (1) and rearranging we obtain an expression for G in terms of measurable quantities

which is

bl 2m\?
= 8—M(?) Ag (5)
Note that the result is independent of the value of m. The Junior Lab pendulum is suspended
by a fragile tungsten wire with a diameter of 1/1000 of an inch. The wire and beam are
contained within copper plumbing to shield them from air currents and electric forces from
stray static charges. Even the window for the laser beam is covered with fine wire mesh and
glass. To avoid having to take the device apart at the risk of breaking the tungsten wire we
provide you with the value of the distance between the brass balls , namely | = (11.75+0.10)
cm. The other quantities are left for you to measure.

2 EXPERIMENT

Set up the laser so that its beam reflects from the mirror on the pendulum beam onto a meter
stick mounted far enough away to facilitate an accurate measure of the angular displacement
caused by shifting the lead balls. Ascertain whether the torsion pendulum is swinging freely
about an equilibrium orientation near the center of its free range. If it isn’t, make very gentle
and cautious adjustment by twisting the fitting on the top of the pipe.

(Take care not to snap the tungsten wire which is attached to a capstan in the
top fitting. The capstan can be turned to raise or lower the pendulum. If it is
raised too much, the wire will snap, which requires a long and tedious repair.)

The pendulum can be gently maneuvered from the outside by the magnetic force exerted on
the (paramagnetic) brass balls by a magnet. With a little practice, one should be able to
almost completely damp out any oscillations about its equilibrium point.

Center the rotating platform so that both lead balls touch, or come as close as possible to
the brass pipes so they are at a well-determined position relative to the brass balls inside.
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When you get the pendulum swinging freely with a very small amplitude (~ .02 radians)
about a central equilibrium position, start recording and plotting as you go the position of
the reflected beam on the scale at regular intervals (e.g. 15 s) so that you have a record of
the damped harmonic motion from which you can determine the period and damping time of
the pendulum. After the amplitude has died to a small value or zero, shift the lead balls to
the other position and resume regular periodic reading and plotting of the laser spot position
on the scale. Go back and forth several times in this way to improve the statistical accuracy
of your measurement. Before shutting down, check that you have measured all the relevant
quantities.

2.1 ANALYSIS

Determine the period T" and characteristic damping time 7 (the time for the amplitude to
decrease by 1/e). Compute the angular deflection from the displacement between the two
equilibrium positions™ of the laser spot on the scale. Compute the value of G from equation
(5) with these and the other measured and given quantities. Estimate the random and
systematic errors. Using your value of G and the well known value of the acceleration of
gravity at the earth’s surface (which you can readily measure to high accuracy in a simple
experiment), compute the mass of the earth. Using the period of the earth’s orbit and the
value of the astronomical unit (the mean distance of the earth from the sun) compute the
mass of the sun. And finally, given the period of the sun’s orbit around the center of the
galaxy (= 2 x 10® yr) and its distance from the gactic center (~ 3 x 10* It yr), estimate the
mass of the galaxy.

2.2 REFINEMENTS

Consider the following corrections to the simple analysis above:

1. the effect of damping on the pendulum period.

2. the effect of the attractive forces between the lead balls and a) the opposite brass balls
(weight=7.60 g), b) the brass beam (weight=1.625 g ).

3. error in the approximate calculation of the moment of inertia of the brass beam and

ball.

4. Use a curve-fitting routine to fit each of your data sets to a decaying exponential.

*The equilibrium position of a lightly damped harmonic oscillator with three successive
extreme displacements x1, x2, and x3 is, to a very good approximation,

T1+T3
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3 SUGGESTED THEORETICAL TOPICS FOR PRESENTATION AT THE
ORAL REVIEW

1. Corrections to the simple formula (equation 5).
2. Damped harmonic motion.

3. General Relativity corrections to Newton’s Law of Gravity.



