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Why Fit Data?

Often when you have some measured data points yi(xi) corresponding
to independent variables xi you would like to find a mathematical
function yfit(x) that represents them. If there is a theoretical model
that you think may explain your data then it will provide such a
mathematical function.

I The model will have some parameters whose numerical values
are unknown and can be adjusted.

I If the data are represented well by the model, then the values of
the parameters in the model can be found from the fit.

I If the fit is good and the parameter values are physically
reasonable, you might decide the model is correct.

I How do you decide if the fit is good?
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Goodness of Fit

The goodness of fit is a measure of the distance between the data
points and the function that is supposed to fit them.

TSE =

N∑
i=1

[ yfit(xi)− y(xi)]
2

where TSE is the total squared
error between the data points
and the equation that is supposed
to fit them.

If the fit is to a straight line, y(xi) = A + Bxi, the parameters A and B
are chosen to minimize a properly normalized TSE.
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Goodness of Fit χ2

Not all data points may have the same error (uncertainty) and one
might expect more adjustable parameters would give a better fit. A
quantity χ2 is defined to take this into account. In normalized form
[Bevington calls this χ2

ν] this is

χ2
v =

1
(N − Nparams)

N∑
i=1

[ yfit(xi)− y(xi)]
2

σ2
i

where σ2
i is the variance (expected squared error) of the data point

y(xi), N is the number of data points in the fit, and Nparams is the
number of adjustable parameters in the fit function.
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Goodness of Fit and χ2

The normalizing factor(N − Nparams) is commonly used because one
expects that if the number of adjustable parameters equals the number
of data points a perfect fit should be possible.

Thus χ2
ν is the ratio of the actual TSE obtained in the fit to the

expected TSE. If the fit is good, we expect χ2
ν ' 1.

Of course σ2
i is just the variance 〈(xi − 〈xi〉)2〉 for data point y(xi);

that means if the measurement of the N data points is repeated a
somewhat different χ2

ν would be obtained each time even if the values
σ2

i were known precisely—which they are usually not. To understand
what χ2

ν tells us about the fit, we need to know more about how it
might change for different measurements of the same data points.
Bevington, Chapter 10 has more detail, and in an appendix there is a
table of the cumulative probability Pχ(χ

2, ν) for χ2
ν .
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Goodness of Fit and χ2 (cont’d)

The value of Pχ(χ
2, ν) depends somewhat on ν, but for a few

parameters, here are some useful rules of thumb.
I A good fit should have χ2

ν ' 1; if you find that χ2
ν is significantly

less than 1, you have probably overestimated the uncertainties σj.
I The chance that χ2

ν > 2 is 0.1 or less, so it is generally accepted
that a fit to one function is statistically better than a fit to another
function whose χ2

ν is twice as large.
I The standard deviation of a fitting parameter A, σA, for example,

is the change in parameter A (while optimizing all other
parameters) that increases the TSE by about N〈σj〉 or increases
χ2
ν by about 1/N from the optimum value. Most fitting

algorithms compute this and Bevington explains how to calculate
it for various fits in Chapters 8, 9, and 11.
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Some Practical Considerations

I The fitting is often easier if all σi are the same, and hence equal
to a quantity σ.

I The fitting is often easier if the data points are equally spaced in
the independent variable x.

I Fitting to a polynomial [Bevington Chapter 8] and functions
which depend linearly on the fitting parameters [Bevington
Chapter 9] are relatively easy.

I Non-linear least squares fitting (i.e., to an arbitrary function) will
usually be most useful to us. It is discussed in Bevington Chapter
11 and the commonly used Lev-Marquardt algorithm is available
in our Matlab package.
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Estimating The Errors

It is clear that knowing the values σ2
i for your measurements will be

important for quantitative analysis of measurements that you make.
Uncertainty in your measurements can result in two main ways.

1. Systematic errors (e.g., miscalibrated meter); these are usually
the same for all measurements and are often difficult to
recognize or find.

2. Random errors (e.g., Poisson counting statistics). These can
usually be reduced by longer measurement times and are easier
to quantify.

Independent measurements are those that do not depend on previous
measurements or history. Repeating independent measurements can
often be used to estimate uncertainties; it will not help with
systematic errors.
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Repeating a Measurement

If we make N independent measurements of a quantity y, the mean
will be

〈y〉 = 1
N

N∑
i=1

yi

and the variance will be

σ2
y = 〈(y− 〈y〉)2〉 = 1

N − 1

N∑
i=1

(yi − 〈y〉)2

The (N − 1) is because one measurement was needed to find 〈y〉 and
so only N − 1 independent measurements were made.
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Repeating a Measurement (cont’d)

[Bevington, Chapter 2]

The uncertainty in the mean is:

〈y〉 = 1
N

N∑
i=1

yi ±

√
σ2

y
√

N
(improves with N)

If uncertainty σi was different for each measurement, this has a more
complicated form

〈y〉 =
∑N

i=1 yi/σ
2
i∑N

i=1 1/σ2
i

±
√

1∑N
i=1 1/σ2

i

David Litster — Department of Physics Brief Notes on Fitting Data



Adding Errors

The total uncertainty in a measurement can be the cumulative result of
several sources.

For statistically independent errors, add the variances:

σ2
total = σ2

1 + σ2
2 + σ2

3 + · · ·

For correlated errors, add the standard deviations:

σ2
total = (σ1 + σ2 + σ3 + · · · )2
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Propagating Errors

[Bevington, Chapter 4]
This arises when you want to know the uncertainty in a quantity that
is a function of other quantities that also are uncertain. You should
read this chapter, but it is mostly common sense combined with what
you know from calculus (Taylor’s series and partial derivatives). It
matters if the uncertainties in the quantities that contribute are
correlated (the previous slide being an extreme example).
Suppose variables u± σu and v± σv and we have a quantity
x = f (u, v). Then:

σ2
x = σ2

u

(
∂x
∂u

)2

+ σ2
v

(
∂x
∂v

)2

+ 2σ2
uv

(
∂x
∂u

)(
∂x
∂v

)
+ · · ·

where

σ2
uv = 〈(u− 〈u〉)(c− 〈v〉)〉
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Propagating Errors (examples)

x = u ± v σ2
x = σ2

u + σ2
v + 2σ2

uv

x = uv or u/v
σ2

x

x2 =
σ2

u

u2 +
σ2

v

v2 + 2
σ2

uv

uv

x = a up ∂x
∂u

= p
x
u

, so
σx

x
= p

σu

u

Sometimes the function you want is a function of the parameters
obtained from fitting data and the algorithm can give you the
correlation or covariance you need; see Bevington, Chapter 9.
Note: if the function you are trying to fit has parameters that are
significantly correlated it can make the fit very slow to converge and
the parameter uncertainties very large.
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Fitting Example: Human Vision

In 1942, S. Hecht, S. Shlaer, and M. Pirenne (HSP) published an
article 1 in which they investigated the detectability of light at the
threshold of human vision. This classic paper in biophysics is
discussed in detail in the excellent textbook Physics With Illustrative
Examples From Medicine and Biology: STATISTICAL PHYSICS by
George B. Benedek and Felix M. H. Villars [Springer-Verlag, 2000].
This discussion is taken from that book.

HSP found that the eye integrates for about 0.1 s and the response is
determined by the number of photons that arrive in that time. They
applied 1 ms flashes of light to a dark-adapted carrot-fed eye so that
the light would fall on the most sensitive part of the retina, and
measured the probability the light would be detected as a function of
the number of photons incident on the cornea.

1“Energy Quanta and Vision”, S. Hecht, S. Shlaer, and M. Pirenne, Journal of
General Physiology 25, 819 (1942)
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Fitting Example: Human Vision (cont’d)

HSP measured the probability light
would be seen as a function of n, the
number of photons incident on the
cornea. Their data are given in the table
at the right.

Their model had two assumptions; first
that only c n of the n photons will reach
the retina to excite a conformational
change in rhodopsin.

n p(n)
37 0.00
59 0.12
93 0.44

149 0.94
239 1.00

Second, it assumed that the number of rhodopsin molecules excited
for a given number of photons obeyed Poisson statistics and that the
light would be seen if at least m0 molecules were excited.
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Fitting Example: the Function

The model has two adjustable parameters: the attenuation c and the
threshold for detection m0.

p(n) =
∞∑

m=m0

(cn)m

m!
e−cn = 1−

m0−1∑
m=0

(cn)m

m!
e−cn .

The fitting is slightly tricky, as m0 must be an integer.

I wrote a program which
found the c to minimize χ2

ν

for given values of m0.
Fixing σ = 0.02 for each
p(n), the program gave the
results at right.

m0 c χ2
ν

7 0.0694± 0.0016 2.17
9 0.0901± 0.0014 1.13

12 0.1212± 0.0026 2.35
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Fitting Example: Results

The model seems good, and it is interesting to learn that the human
eye can detect as few as 10 photons.
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Fitting Example: Matlab Results

I tried the same fit using matlab and got essentially the same results.
They differed slightly because I used σ = 0.03 instead of 0.02. My
matlab script fithsp.m gave a reduced χ2

ν of 0.99 and the
parameters c = 0.1000± 0.0005 and m0 = 10.0± 1.8 (in the matlab
fit, m0 was not restricted to be an integer).

If you want to try my calculation using matlab, you can get a copy of
the data and the scripts I used from the HANDOUTS link on the 8.13
web page; get the file HSP.zip.

The matlab plot of the fit is on the next slide.
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Fitting Example: Plot of Matlab Results

David Litster — Department of Physics Brief Notes on Fitting Data


