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Policies, Procedures and Safety Information

MIT Department of Physics
(Dated: September 5, 2011)

1. Overview of 8.13

The purposes of Junior Lab are to give you hands-on
experience with some of the experimental bases of mod-
ern physics and, in the process, to deepen your under-
standing of the relations between experiment and the-
ory, mainly in atomic and nuclear physics. You will do
experiments on phenomena whose discoveries led to ma-
jor advances in physics. The data you obtain will have
inevitable systematic and random errors that obscure the
relations between the macroscopic observables of our sen-
sory experience and the physical laws that govern the
submicroscopic world of atoms and nuclei. You will be
challenged to learn how each of the experimental setups
works, to master its manipulation so that you obtain
the best possible data, and then to interpret the data
in light of theory with a quantitative assessment of the
errors. We believe you will find satisfaction in observ-
ing, measuring and understanding phenomena many of
which would have won you the Nobel Prize if you had
discovered them.

1.1. Section Organization

The Registrar has preassigned you to one of the sec-
tions listed in Table I, with further adjustments reflected
on the 8.13 Stellar web page. If you cannot come to the
assigned time, please email spatrick@mit.edu ahead of
time to see if the section of your choice can be accom-
modated. Attempts are made to keep each section’s en-
rollment less than or equal to 16 students, with 18 being
a logistical maximum. If the course enrollment is espe-
cially large, you may not be able to have the section of
your choice.

It is essential that you show up to the first session of
at least one Junior Lab section in order to receive credit
for mandatory radiation protection training.

Each section is run independently by one faculty mem-
ber with the assistance of a graduate teaching assistant.
The lab is also open on Fridays from 10AM to 4PM for
additional lab time outside of your regularly scheduled
section. Friday time reservations (3-hour block maxi-
mum, please) can be made through the Junior Lab online
reservation tool.

You are expected to work in pairs, sharing as evenly as
possible in the measurements, the analysis, and the inter-
pretation of the data. The best choice for a lab partner
may be someone who lives nearby and has a schedule that
matches yours so you can get together outside of class to
analyze and interpret your results. Most students find
that they require the full 18 hours per week credited to

TABLE I: Junior Lab Section Instructors — Fall 2011

Section Instructor

Monday-Wednesday 9-12am Professor David Litster

Monday-Wednesday 2-5pm Professor Gunther Roland

Tuesday-Thursday 9-12am Professor June Matthews

Tuesday-Thursday 2-5pm Professor Nergis Mavalvala

Junior Lab to do the work of the course.

1.2. Schedule Summary

The first few class sessions will familiarize you with the
lab, giving everyone a common foundation in experimen-
tal techniques and data analysis. The first two sessions
are dedicated to important organizational and adminis-
trative issues, plus important safety information and an
introduction to the basics of statistics and data analy-
sis. Next, one 3-hour session is scheduled for each of
three short introductory experiments: ‘Poisson Statis-
tics’, ‘Transmission of Electromagnetic Pulses’, and ‘The
Photoelectric Effect’. The preparatory questions and one
written summary resulting from these preliminary exper-
iments will be graded (to let you know how you’re doing)
but not recorded, so your final grade will be unaffected.
Following this introductory period, students will plan and
execute four longer experiments. The first will be exe-
cuted in 5 sessions, while the last three will be done in 4
sessions each. The term culminates in a week-long series
of public oral presentations given by students to peers,
friends and faculty in an American Physical Society con-
ference type event.

Throughout the term you will be required to keep a
detailed laboratory notebook, which is provided to you
by Junior Lab. This will be collected and graded 3 times
during the semester: once after the introductory experi-
ments (this grade is not recorded), once around midterm,
and once at the end of the semester.

1.3. Attendance Requirements

You are required to attend your assigned lab session
for the full three hour period. Any exception must be ap-
proved by the section teaching staff. The laboratories will
be open every class day from 9AM–5PM and Friday from
10AM–4PM (except Institute holidays) with staff help
available to discuss physics and maintain equipment. At

http://web.mit.edu/physics/facultyandstaff/faculty/davidlitster.html
http://web.mit.edu/physics/facultyandstaff/faculty/roland_gunther.html
http://web.mit.edu/physics/facultyandstaff/faculty/junematthews.html
http://web.mit.edu/physics/facultyandstaff/faculty/nergismavalvala.html
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all other times the laboratories must be kept locked for
security and safety. Junior Lab students may occasion-
ally be permitted access to the lab outside of the normal
hours, but only after consulting with their TA or faculty
member. It is each student’s responsibility to maintain
security by making sure the doors are kept locked at all
times outside of the regularly scheduled sessions. One
should never work alone in a laboratory, especially if high
voltages are involved. A partner or instructor must be in
reach.

2. Ethics in Science and Education

When you read the report of a physics experiment in a
reputable journal you can generally assume it represents
an honest effort by the authors to describe exactly what
they observed. You may doubt the interpretation or the
theory they create to explain the results but at least you
trust that if you repeat the manipulations as described,
you will get essentially the same experimental results.

Nature is the ultimate enforcer of truth in science.
If subsequent work proves a published measurement is
wrong by substantially more than the estimated error
limits, credibility is questioned. If fraud is involved, a
career may be ruined. Thus most professional scientists
are very careful about the records they maintain (see the
Junior Lab notebook requirements in the next section of
the reader) and the results they publish.

Junior Lab is designed to provide pre-professional
training in the art and science of experimental physics.
What you record in your lab book and report in your
written and oral presentations must be exactly what you
have observed including date, time and name of experi-
menter.

Sometimes you will get things wrong because of an er-
ror in manipulation, equipment malfunction, misunder-
standing, or a miscalculation. Simply cross out errors
using a diagonal line in your notebook and start again.
The instructor’s job is to help you figure out what went
wrong so you can do better next time. If circumstances
in an experiment are such that you cannot get your own
data (e.g. broken equipment, bad weather), you may re-
quest your instructor’s permission to use someone else’s
data, provided you acknowledge it.

Fabrication or falsification of data, using the results
of another person’s work without acknowledgement, and
copying from “the files” are intellectual crimes as seri-
ous as plagiarism, and possible causes for dismissal from
the Institute. This includes using someone else’s data
without your instructor’s explicit permission.

The precaution regarding the acknowledgement of
other people’s data also applies to acknowledging other
people’s rhetoric. The appropriate way to incorporate
an idea which you have learned from a textbook or other
reference is to study the point until you understand it
and then put the text aside and state the idea in your
own words.

One often sees in a scientific journal, phrases such as
“Following Albert Einstein . . . ”. This means that the
author is following the ideas or logic of Einstein not his
exact words. If you quote material, it is not sufficient
just to include it in the list of references at the end of
your paper. You should use the following formatting:

The quote should be indented on both sides
or enclosed in quotes, and attribution must be
given immediately in the form of a reference
note.1

Importing text from a published work, from other student
papers, or from the lab guide without proper attribution
is a serious breach of ethics and will be dealt with by the
Committee on Discipline.

Most Junior Lab experiments are concerned with data
comparison measurements of well known fundamental
constants such as ~, e, kB , e/m, and c, or significant
physical quantities such as the mean life of the muon
or the cross section of an electron for scattering a pho-
ton. The purpose of these experiments is to give you
hands-on experience with atomic and nuclear phenom-
ena, a sense of the reality of the concepts and theories
you have studied in books and courses, and the beginning
of professional skill in obtaining and recognizing reliable
data and extracting meaningful results from them.

There is nothing wrong with “peeking” in the CRC
Handbook or any of the many relevant texts to see what
your experiment should have yielded. In fact, in your
conclusions, you should compare your values with the
established ones — as you would in any of your later
scientific publications. One way to get maximum benefit
from your Junior Lab experience is to play it as a game in
which you squeeze the most accurate measurement you
can get out of the available equipment and the practical
limits of analysis, make a rigorous estimate of the error,
and then compare the results with the established value.
If the established value is outside your error range, try
to find out what went wrong, fix it, and try again. If
the established value is in your error range, don’t rest
easy, but do whatever may be necessary to prove it isn’t
an accident. Repetition is the essential key to attaining
confidence and meaningful errors for a result, whether
of a single measurement or an entire experiment! But
whatever the outcome of an experiment is, you must tell
exactly what you observed or measured when you present
your oral or written report, regardless of how “bad” the
results may appear to be.

1 A. Einstein: Personal communication. Footnotes may be placed
either at the bottom of the page where referenced or at the end
among the bibliography.
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3. Required Texts

• Experimental Lab Guides, available for download
from the Junior Lab web site.

• Data Reduction and Error Analysis for the
Physical Sciences, 3rd Edition, by P.R. Bev-
ington and D.K. Robinson (McGraw-Hill: 2003)

The Bevington and Robinson text contains a compre-
hensive treatment on error analysis and will be useful
throughout your career.

3.1. Other Useful Texts

There are several other recommended textbooks on re-
serve in the Junior Lab Library.

• Experiments in Modern Physics by Adrian Melissi-
nos (Academic Press: 1966 1st Edition & 2003
2nd Edition). Please consult these before and dur-
ing your investigations. This text is only “Recom-
mended” because the Junior Lab staff feel it is too
expensive to “Require”. Material which is essential
to the understanding of an experiment, and that can
be found in the Melissinos text, is generally omitted
from the Lab Guides. Note that the Physics Read-
ing Room has both editions which offer different
material, you should consult them both!

• The Art of Experimental Physics by Daryl Preston
and Eric Dietz (John Wiley: 1991)

• An Introduction to Error Analysis 2nd Edition, by
John Taylor (University Science Books: 1997).
This book covers much of the same material as Bev-
ington and Robinson.

3.2. Reference Articles and Equipment Manuals

At this stage of your training as an experimentalist,
you should realize that there is no “comprehensive” or
perfect textbook. Much of the material you will need to
dig into are the early journal papers which originally de-
tailed many of these important discoveries. The Junior
Lab web site has an electronic library containing many of
these articles in PDF format and which is accessible using
MIT certificates. Junior Lab also has numerous books on
reserve in the Hayden Library Reserve Book Room (14N-
132) and the Physics Reading Room (4-332). References
and lending book resources are available through Barker
and Hayden Libraries and students should become famil-
iar with both of these Institute resources. Finally, there
is a small Junior Lab Library in 4-361. These books may
not by taken from the laboratory, but copies of a few
pages may be made on the photocopier.

4. 8.13 Grading Policy

See Table II.

TABLE II: 8.13 grading policy

Attendance and Lab Performance 10%

Laboratory Notebooks (2 checks) 10%

Preparatory Questions & Homework (5) 10%

Oral Examinations (4) 30%

Final Public Oral Presentation 10%

4-Page Written Summaries (4) 30%

4.1. Attendance and Lab Performance — 10%

The regularity of your attendance will be a factor in de-
termining your grade in the course. Also your prepared-
ness for the measurements and alternating as the “lead”
(with your partner), to carry them out. Lab instructors
will be delighted to accommodate your improvements and
corrections to the lab guides!

It is essential that you use efficiently all of the labo-
ratory time assigned to you, and sometimes more. An
experienced experimental physicist will be present in ev-
ery scheduled session. He or she will be assisted by a
graduate teaching assistant. In addition, the Junior Lab
staff includes two technical instructors responsible for the
maintenance of the equipment and the development of
new experiments. We are ready and eager to help you
make things work properly and answer questions. Call
for help when you get stuck.

Failure to have a “dry run” of the final presentation
with a Writing Program instructor (see below) will result
in a 2% reduction of the lab participation grade.

4.2. Laboratory Notebooks — 10%

One critical objective of this course is to instill habits
of record keeping that will serve you well in future re-
search. To this end you will be given a standard experi-
mental notebook in which the complete dated record of
procedures, events, original data, calculations and results
of every experiment is to be kept. No other form of
notebook is acceptable in this course. Although
you will generally work in pairs and are urged to col-
laborate in all aspects of carrying out the experiments
and analysis, each student must keep a complete, dated
record of each experiment and its analysis. The grid-
lined paper in the notebook is convenient for formatting
tabulations, for guiding line drawings, and for making
rough plots. High resolution plots, photos, and photo-
copies of shared data should be glued or taped in place.
You must write a sufficient narrative as the experiment
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proceeds so that, years later, you could reproduce the re-
sults you obtained. Notes, tables, and graphs should be
neat and compact, leaving as little empty space in the lab
notebook as is compatible with clarity and the logic of
organization. There should be no loose sheets or graphs
in your notebook.

Analyze data in the lab in a preliminary way as you
go along to check for reasonableness. If you are making
a series of measurements of one quantity as you vary
another, plot the results as you go along so that you can
see the trend, catch blunders, and judge where you may
need more or less data. Repeat every measurement
at least three times in as independent a manner as
possible in order to establish a statistical basis for
estimating random error and to reduce the chance
of blunders. If you get through all the manipulations
and preliminary analysis of an experiment in less than
the allotted time, take the opportunity to perfect part
or all of the experiment so as to obtain the best possible
data set.

Many experiments will require you to transfer your
data to a computer and store them in files on disk. Obvi-
ously, it is not practical in these cases to print out all your
data and paste them into your notebook. However, we
expect to see in your lab notebook representative plots
or tables. In addition, we expect a clear description and
summary of the data files so that when you return to
them days or weeks later, you are able to identify partic-
ular files with procedures you carried out in the lab.

Specific requirements for your notebooks are
listed on the web at Junior Lab Notebook Guide-
lines.

Student notebooks will be evaluated three times dur-
ing the fall term. The first will follow the Introductory
Experiments and be “graded but not recorded” in or-
der to help students learn what is expected. The second
check will be around midterm for 5% of the grade. The
final check will be at the end of the semester for 5% of
the grade. Please talk with your section instructor before
your notebook evaluation if you have any questions.

4.3. Preparatory Questions and Data Analysis
Assignment — 10%

Each lab guide has a set of preparatory questions which
point you to the essentials of the experiment. You are ex-
pected to work out the solutions to the preparatory prob-
lems and/or predictions in your notebook before starting
the experiment. Make a photocopy of your solutions and
deposit it in your TAs mailbox in 4-361. It will be col-
lected shortly after the start of the first session of each
new experiment. Late solutions will not be accepted
because you will need to know this material BE-
FORE the experiment: late solutions do not make
sense. Your solutions will be graded by the graduate
teaching assistant and returned at the next session.

The Introductory Experiment preparatory questions

will be graded for feedback but will not count towards
your final course grade.

4.4. Oral Examinations (4 private) — 30%

A one hour total length (2 students × 30 minutes each)
oral examination and discussion of each main experiment
will be held between the pair of students and one or more
of their instructors within 10 days of the last scheduled
session for that experiment. Each student must bring his
or her lab notebook to the exam session.

To familiarize you with the procedure, a one-hour oral
will be held on ONE of the three Introductory Exper-
iments of the students’ choice. This oral will proceed
identically as the others and will be scored but will not
count towards the students final course grade. It is
designed to give the student feedback on content, style
and presentation without the pressure of a graded per-
formance. Partners should choose different Introductory
Experiments for this initial oral exam. Videos of these
practice orals will be used along with guidance and advice
from Lecturers from MIT’s Program in Writing, Atissa
Banuazizi and Lydia Volaitis. Students must schedule
a 1-hour appointment with one of them within a week
following their practice oral for feedback.

Each student should prepare a 15-minute oral
report on the theoretical and experimental as-
pects of a single portion of the experiment. Fifteen
minutes is a short time, so it is essential that you re-
hearse your presentation as you would if you were giving
a 15-minute presentation at a meeting of the American
Physical Society. Please review the Society guidelines at
http://www.aps.org/meet/guidelines.cfm.

We suggest a maximum of ten slides and strongly
suggest preparing your presentation electronically (e.g.
LATEX or MS PowerPoint) and using the LCD projector
for the cleanest, most professional presentation possible.
The Junior Lab website has detailed instructions and a
template for generating your own presentations.

The theoretical section should demonstrate a mastery
of some portion of theory relevant to understanding the
significance of the experimental results. The experimen-
tal section should dominate and demonstrate an under-
standing of how the equipment works, what was mea-
sured, how the data were reduced, and how the random
and systematic errors were estimated. Each student
must discuss different aspects of the motivating
theory and experiment and furthermore it is not
acceptable to discuss theory only or experiment
only; every presentation should contain a balance!
Full cooperation with lab partners and others in
preparing for the oral reports is encouraged. This
latter aspect is particularly important to ensure that
both partners report the same results!

The oral exam on the fourth main experiment is only
required for students who wish to use that experiment
for the final (public) presentation. (See below.) For stu-

http://web.mit.edu/8.13/www/Notebooks.pdf
http://web.mit.edu/8.13/www/Notebooks.pdf
http://www.aps.org/meet/guidelines.cfm
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dents who take the option to not present the fourth ex-
periment, each of the remaining three oral exams still
counts as 7.5% of the total grade, but the written sum-
mary (see below) for the fourth experiment will have its
value doubled to 15%.

4.5. Final Public Oral Presentation — 10%

At the end of the term in December, each student will
give a public oral presentation which will be attended
by all students in the section and any other interested
parties. This public oral is a major component of the CI-
M requirement that 8.13 fulfills. This is in addition to
the four jointly prepared oral presentations given to the
section instructor. We have reserved the last two class
sessions for this purpose. The public oral presentations
should be given in the style of a paper presented at a con-
ference, with careful attention paid to the preparation of
material — usually in the form of an electronic presen-
tation or transparencies — and to the clarity of the oral
discussion. Questions from classmates and the audience
are encouraged allowing for a general discussion of the
experiment.

Each student is required to make a 1-hour appoint-
ment with a “Program in Writing” advisor to do a “dry
run” and receive feedback at least four days prior to their
public presentation. The dry run will not be graded, but,
as mentioned above, failure to do it will result in a 2%
reduction of the lab participation grade. Obviously, to
present on an experiment in the public presentation, it
must have previously been presented as an oral exam
with the section instructor.

4.6. 4-Page Written Summaries — 30%

You must email a PDF copy of your individually-
prepared written summary (≤4 pages including figures)
of the purpose, theory, and results of the experiment by
midnight on the day you give your oral examination. The
delay between oral exam and paper submission allows
you to correct any egregious mistakes that were uncov-
ered during the exam so as not to repeat them in your
written work and receive a double penalty! All your
work on the experiment should be summarized,
not just the part you chose for your oral presen-
tation. The individual summary you hand in should
show evidence of your own mastery of the entire exper-
iment, and possess a neat appearance with concise and
correct English. Its organization and style should re-
semble that of an article in the Physical Review Letters
(http://publish.aps.org/STYLE/). The abstract is
essential. It should briefly mention the motiva-
tion (purpose), the method (how measured) and
most important, the quantitative result WITH
uncertainties. Based on those, a conclusion may be
drawn. The report must be typeset in a form that would

be suitable for submission as a manuscript. To aid you
in this process we have produced a sample paper tem-
plate written in LATEX that we encourage you to study
and use for your own submissions. The sample paper
is downloadable from the Junior Lab site along with its
associated .tex file.

The body of the summary should include a discussion
of the theoretical issues addressed by the experiment, a
description of the apparatus and procedures used, a pre-
sentation of the results (including errors!), a discussion
of these results, and, finally, a section briefly presenting
your conclusions. The total length (including figures) of
your summaries should not exceed four pages in length.
It is easiest to read if you include figures and plots in-
line within the text and the sample paper template shows
you how this is easily done. However, do not inundate the
reader with material; you should find a way to summa-
rize your results in at most two or three plots or tables.
The figures and tables must be properly captioned. Ma-
terial and ideas drawn from the work of others must be
properly cited, and a list of references should be attached
to the summary.

Papers will be graded using the following criteria:

• Theoretical and/or experimental motivation: 15%

• Description of experiment: 35%

• Analysis of data and results: 35%

• Style and English: 15%

• Papers not submitted by midnight after the oral
exam will be deducted 10% for each day they are
late.

MIT has excellent resources for technical writ-
ing and oral presentations (including on-line writ-
ing consultations) at http://web.mit.edu/writing.
Use them!

As mentioned above, students who take the option to
not orally present the fourth experiment will have the
value of the written summary for the fourth experiment
doubled to 15% of the total grade.

5. Safety in Junior Lab

We are fortunate that there has never been a serious
injury in Junior Lab. Prevention of injury is a matter of
being aware of and having respect for pieces of equipment
that are potentially dangerous. Nevertheless, since it is
virtually impossible to set up a reasonably comprehen-
sive and interesting set of experiments in modern physics
without using equipment that has potential hazards, it is
essential that students and staff be aware of the hazards,
and exercise appropriate cautions.

http://web.mit.edu/commreq/background.html
http://web.mit.edu/commreq/background.html
http://publish.aps.org/STYLE/
http://web.mit.edu/writing
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5.1. Electrical Safety

The first rule is to never work alone. Some years ago
a student was electrocuted in Building 4 by a labora-
tory power supply. Had he not been by himself, someone
might have saved him.

All high voltage supplies are clearly marked as dan-
gerous. Do not poke or probe into them. Turn off the
supply if you need to change cable connections. The sup-
ply may be dangerous even when turned off if the capac-
itors have not discharged; always keep one hand in your
pocket when testing any circuit in which there may be
high voltages present so that if you get a shock, it will not
be across your chest. Never go barefoot in the lab. Re-
member that it is current that kills. A good (e.g. sweaty)
connection of 6 volts across your body can kill as well as
a poor connection of 600 or 6000 volts.

5.2. Laser Safety

A laser beam may not seem very bright, but if it en-
ters your eye it will be focused by the lens of your eye
to a pinpoint spot on the retina where the intensity is
sufficient to destroy retinal cells. It is wise to terminate
a laser beam with a diffuse absorber so that the beam
doesn’t shine around the room. Never examine the per-
formance of an optical system with a laser by viewing the
beam directly with your eye or reflector.

5.3. Cryogenic Safety

When the cap on a liquid-helium Dewar is left off, air
flows in and freezes in the neck, forming a strong cement.
When a probe is inserted, it may be frozen in solid. Then
pressure will build up until something explodes. During
the superconductivity experiment, never leave the Dewar
cap off for more than a few seconds. Always ream out
the Dewar before you use it. Check periodically to see
that the probe is free. If the probe should freeze in the
Dewar, get help immediately from any of the Junior Lab
staff or instructors.

Liquid nitrogen is chemically inert, but it can cause
severe frostbite. Wear gloves and protective glasses when
transferring or transporting liquid nitrogen.

5.4. Radiation Safety

Radiation safety at MIT is under the authority of the
Radiation Protection Office (N52-496). Junior Lab is ac-
countable to that office for the safe handling and account-
ability of the sources used in the experiments. During the
first class session, Christopher Tavares, a member of the
Radiation Protection Office, will instruct you in the safe

use and handling of radioactive material. (See also Ta-
bles III and IV.) Attendance at this session is mandated
by Massachusetts state law.

TABLE III: Precautions for Working with Radioactive
Materials (ALARA)

1. Don’t handle radioactive sources any more than you
have to.

2. Work quickly when transferring or positioning radioac-
tive sources.

3. Never take a source away from the Junior Lab, even
temporarily. The senior staff are legally responsible for
the sources and must periodically account for their pres-
ence and condition.

4. Replace sources in the lead storage cabinet when they
are not in use and ensure that the cabinet is locked at
all times.

5. Keep sources away from your body.

6. Never bring a radioactive source near your eyes because
they are particularly sensitive to radiation.

7. Be aware of the sources being used in neighboring ex-
periments.

8. Remember ALARA – As Low as Reasonably Achiev-
able!

TABLE IV: A table showing the radioactive sources
used in Junior Lab and their approximate activities.

Experiment Isotope ∼ Activity (mCi)

Compton Scattering 137Cs 0.4

Mössbauer Spectroscopy 57Co 7

Rutherford Scattering 241Am 0.2

Alpha Decay Uranium Ore 5×10−6

Relativistic Dynamics 90Sr 8
133Ba 0.08

X-Ray Physics 241Am 10
55Fe 0.7
90Sr 0.6
57Co 0.02

Calibration Sources 133Ba 0.005
109Cd 0.008
137Cs 0.007
57Co 0.0001
60Co 0.0005
54Mn 0.0002
22Na 0.002

Meticulous care must be taken by all students and staff
to insure that every source signed out from the repository
be returned immediately after its use and signed in.

Ionizing radiation damages tissue; any exposure should
therefore be minimized. The unit of radiation exposure
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is the rem (roentgen equivalent man). Your inescapable
dosage from cosmic rays and other background sources
is 360 mrem yr−1, which works out to 4.2 × 10−2 mrem
hr−1. The recommended limit to controllable exposure
for a member of the general public is 100 mrem yr−1,
averaged over any consecutive five years. If you follow
the Junior Lab guidelines, your exposure will be only a
small fraction of the dose you receive from the natural
background. A meter is available in 4-361 for you to
check the radiation levels yourself.

Radioactive sources emit three types of radiation: high
energy helium nuclei (alpha rays), electrons (beta rays),
or photons (gamma rays). Most of the sources in Junior
Lab emit only gamma radiation. Of the sources which do
emit alpha or beta particles, most are enclosed in plastic
or metals, which prevent particulate radiation from es-
caping. The exceptions are the 90Sr source in the e/m
experiment and the 241Am source in the Rutherford Scat-
tering experiment; both sources are in an enclosed appa-
ratus. These sources should never be handled. Handling
of open alpha- or beta-emitters can result in dangerous
dosages to the skin.

The strength of a radioactive source is measured in
curies (Ci). A one-curie source has an activity of 3.7 ×
1010 disintegrations s−1. The “absorbed dose” is a quan-
tity that measures the total energy absorbed per unit
mass; it is measured in rads, where 1 rad = 100 erg g−1.
The “equivalent dose” is measured in the units discussed
above, the rem. The equivalent dose is derived from the
absorbed dose by multiplying by a “radiation weighting
factor” which is a measure of how damaging a particu-
lar type of radiation is to biological tissue. For photons
(gamma rays) and electrons and positrons (beta parti-
cles), the radiation weighting factor is unity; for helium
nuclei (alpha particles), it is 20; for protons with energy
greater than 2 MeV it is 5; and for neutrons it ranges
from 5 to 20, depending on the energy. When you use
the survey meter in the lab, the readings are in rads, and
you must consider the type of particle when you work
out the equivalent dose.

For gamma rays with energy greater than 1 MeV,
a useful approximation is that the equivalent dose due
to a source with an activity of C microcuries is 5.2 ×
10−4CEγR−2 mrem hr−1, where R is the distance from
the source in meters and Eγ is the energy of the gamma
ray in MeV. For gamma rays with energy less than 1
MeV, this formula is still approximately true for a full-
body dose. However, low-energy gamma rays deposit
their energy in a smaller mass of tissue than high-energy
gamma rays and can cause high local doses. For exam-
ple, the local dose to the hands from handling a 10 keV
source can be up to 25 times the value given by the above
formula; hands, however, have a higher tolerance to ra-
diation than inner organs or eyes.

The protective value of shielding varies drastically with
the energy of the photons. The intensity of a “soft” X-
ray beam of < 1 keV can be reduced by many orders of
magnitude with a millimeter of aluminum while 1.2 MeV

gamma rays from 60Co are attenuated by only a factor
of 2 by a lead sheet one-half of an inch thick. The best
way to keep your dosage down is to put distance between
you and the source. If you stay a meter away from most
sources in Junior Lab, you will be receiving, even without
any lead shielding, a dose which is much less than your
allowable background dose. If, however, you sit reading
the write-up with a box of sources a few inches away, you
may momentarily be receiving ten to a hundred times the
background level.
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The Photoelectric Effect

MIT Department of Physics
(Dated: September 5, 2011)

The objective of this experiment is to demonstrate the quantization of electromagnetic waves and
to determine Planck’s constant h. You measure the maximum kinetic energy of electrons ejected
by the photoelectric effect from an alkali metal surface as a function of frequency. The constant
“offset” is caused by the work function φ of the metal, e.g. the minimum energy needed to get an
electron out of the specific metal.

1. Preparatory Questions

1. If a certain metal with a work function of φ =
2.5 eV is illuminated by monochromatic light of
wavelength 3500 Å, what is the maximum kinetic
energy of the electrons ejected in the photoelectric
effect?

2. What are the principal lines in the spectrum of
a mercury discharge lamp (see Reference [1], and
Oriel high power mercury lamp specifcations)?
Could you observe the photoelectric effect on a sil-
ver (as opposed to potassium) cathode?

3. How does a narrow-band optical interference filter
work? See Optical Interference Filters [2].

4. Sketch the expected curves of current against re-
tarding voltage when the cathode of the tube is
illuminated with light of wavelengths 3650 Å, 4035
Å, 4360 Å, 5460 Å, and 5775 Å, respectively. As-
sume I0 = 1 nA at 3650 Å.

2. The Photoelectric Effect

A very accessible introduction to this material is in
the American Institute of Physics’s A Look Inside the
Atom. In 1895 Heinrich Hertz observed that ultraviolet
light from the sparks of his generator for radio waves he
had recently discovered, falling on the negative electrode
of his radio wave detector, induced the flow of electricity
in the gap between the electrodes. Pursuing the phe-
nomenon in detail, he discovered the photoelectric effect
whereby light of sufficiently short wavelength causes the
ejection of electrons from a metal surface. 1905 Nobel
Laureate Philipp Lenard made improved measurements
and demonstrated by determination of their charge to
mass ratio that the ejected particles are identical with
the electrons that had recently been discovered by 1906
Nobel Laureate J. J. Thomson in experiments with cath-
ode rays.

Crude though the early data were, the qualitative fact
of the dependence of the critical cutoff voltage on the
wavelength of light emerged with sufficient clarity to in-
duce the young Albert Einstein, working as a patent ex-
aminer in the Swiss Patent Office in 1905, to link the ef-
fect with the recent idea, introduced by Planck in 1900,

that matter radiates its energy in quanta of energy hν.
He postulated that light delivers its energy to an absorber
in quanta with energy hν. Thus, if it takes an amount of
energy φ to lift an electron out of the surface and away
from its image charge, then the residual kinetic energy
K of the ejected electron is

K = hν − φ (2.1)

1921 Nobel Prize was awarded to Albert Einstein for
his discovery of “the law of photoelectric effect”. It was
not until 1912 that the technical problems of making pre-
cision measurements of the photoelectric effect were over-
come by 1928 Nobel Laureate Sir Owen Wilans Richard-
son and K. T. Compton (former MIT president) to the
point where the Einstein photoelectric equation could be
tested to high accuracy and used in precise determina-
tions of Planck’s Constant h = 6.626 × 10−34J · s =
4.135× 10−15eV · s. In this experiment you will measure
the photoelectric current from an alkali metal surface as
a function of a retarding potential that opposes the es-
cape of the electrons from the surface. From the data
you will be able to derive the value of Plank’s constant
and the work function φ of the cathode material.

3. Experimental Setup

The apparatus is depicted in Figure 1. Familiarize
yourself with all of the components before turning any-
thing on or making any signal connections.

The Agilent variable DC Power supply provides the
retarding voltage between the anode and the cathode.
Pay close attention to the grounding connections between
the electrometer and the power supply! If the power
supply meter does not have sufficient resolution, try using
an external digital voltmeter.

3.1. Light Source

The radiation source for this experiment is a high-
power mercury discharge lamp Oriel 65130, or similar
model. You should turn on the lamp as soon as you be-
gin the lab to allow it to warm up. The spectral output
of the lamp will change during the first 10 – 15 minutes.

https://web.mit.edu/8.13/8.13c/references-fall/photoelectric/oriel-high-power-hg-lamp.pdf
https://web.mit.edu/8.13/8.13c/references-fall/photoelectric/baum.pdf
http://www.aip.org/history/electron/
http://www.aip.org/history/electron/
http://en.wikipedia.org/wiki/Heinrich_Hertz
http://nobelprize.org/nobel_prizes/physics/laureates/1905/index.html
http://nobelprize.org/nobel_prizes/physics/laureates/1906/index.html
http://nobelprize.org/nobel_prizes/physics/laureates/1921/index.html
http://nobelprize.org/nobel_prizes/physics/laureates/1928/index.html
http://nobelprize.org/nobel_prizes/physics/laureates/1928/index.html
https://web.mit.edu/8.13/8.13c/references-fall/photoelectric/oriel-high-power-hg-lamp.pdf
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FIG. 1: Experimental arrangement for measuring the
photoelectric effect. The lens focuses the light to avoid

hitting the anode ring.
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FIG. 2: Top Panel: Spectral output of the
Thermo-Oriel 65130 Hg lamp after ∼ 20 minutes

warmup. Bottom Panel: Shows the lamp output after
passing through the 4360 Å filter.

Once the lamp has stabilized, the spectral output is sim-
ilar to that shown in Figure 2.

The narrow band pass filters used to select individ-
ual mercury emission lines have a preferred orientation;
point the highly-reflecting side (a silvery color) toward
the lamp and the colored side towards the phototube
cathode. Be careful not to place the filters too close
to the lamp! The heat can bleach the color of the
filters, leading to undefined behavior! Monitor
the heat of the filters as you perform the experi-
ment.

3.2. Connecting the Apparatus

Connect the phototube cathode to the Keithly elec-
trometer (or similar model) operating as an ultra-

sensitive ammeter. Note that the input connector to
the electrometer requires a triaxial connector for double
grounding and thus be certain that you insert a BNC–
triax connector before connecting the BNC cable from
the cathode. Turn on the power supply and reduce the
retarding voltage to zero.

Illuminate the photocathode with light of the various
spectral lines of mercury selected by the interference fil-
ters mounted on the filter wheel. You may want to start
with the more energetic spectral lines. Rigorously con-
vince yourself that the current you are measuring is a
photoelectric current caused by the mercury lamp. With
creative use of black tape and the open hole, one can
correct for ambient light effects if necessary.

The cathode of the Leybold photocell is a very thin
layer of potassium (φK = 2.3 eV) deposited onto an ox-
idized silver coating electrically connected to the cylin-
drical brass cap on top of the cell. The potassium is
the source of the photo-ejected electrons in this experi-
ment. It is not possible to precisely determine the work
function for removing an electron, because the cathode
surface interacts with the remaining gases in the photo-
cell as a getter, so that the surface characteristics change
a little from the ideal case. The anode ring is made from
platinum-rhodium alloy (φPt = 5.7 eV). Typical photo-
electric currents are 100-1000 nA. It is important to note
that the electronic work function W is a material con-
stant which incorporates the different emission potentials
of the cathode and anode. The former is a difficult quan-
tity to estimate due to the manufacturing process which
makes the cathode surface inhomogeneous. It is com-
posed of a mixture of potassium, potassium oxide and
oxidized silver. For this reason, you need to take care
that the same area is always illuminated. The emission
work function of the photoelectrons can vary locally!

1. The photocell consists of an evacuated glass bulb
and is fragile!

2. Do not subject the photo cell to mechanical
stresses.

3. Protect the photo cell from overheating

4. Protect the photo cell against excessive incident
light (use filters if necessary!)

4. Procedure

Measure, tabulate, and plot the phototube current as a
function of the the retarding voltage for each filter. Make
sure to extend the measurements beyond I = 0 in order
to measure the effects of “reverse” current. Repeat the
series of measurements at least five times to obtain
the data necessary for a reliable estimate of the random
errors of measurement.

The following are practical problems with which you
must contend:

https://web.mit.edu/8.13/8.13d/manuals/leybold-klinger/leybold-55877-plancks-constant-photocell.pdf
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1. Light striking the anode ring can produce photo-
electrons that cause a reverse (negative) current in
the electrometer and confuse the identification of
the critical cutoff voltage. It is therefore important
to focus the light beam so that it passes cleanly
through the ring without illuminating it. Experi-
ment with the location of the lens to produce the
sharpest image possible at the aperture to the pho-
tocell holder.

2. Proper grounding of the apparatus is essential to
obtaining reliable data. When the grounding is
proper, the electrometer readings should be unaf-
fected by touching or moving your hand near the
equipment.

3. Because you are measuring such small currents
(the currents you obtain with no retarding voltage
should be on the order of hundreds of picoamps),
the ammeter will be prone to pick up induced cur-
rents from ambient magnetic fields and your induc-
ing charges while moving near the apparatus. You
can avoid such interference by keeping the connect-
ing wires as short and direct as possible and free of
loops. For instance, you might want to use a short
piece of copper wire to ground the positive termi-
nal of the power supply as shown in Figure 1. You
may also find it useful to twist some of the cables
together.

4. Your measurement chain may or may not be sen-
sitive to ambient light. Check to see if the current
you are measuring is affected when you cover the
experiment with black cloth.

4.1. Baking out the anode ring

Potassium can precipitate on the anode ring in very
old photo cells in the course of storage at higher ambi-
ent temperatures or under illumination of the photocell
at very high intensities, making it necessary to bake out
the anode ring. Bake out the anode ring only if the
measurement cannot be improved by any other
means, as the potassium atoms baked out of the
anode ring can precipitate over the entire photo-
cell. When the process is performed improperly,
the potassium layer of the photocathode can be
overheated, releasing more potassium and can ir-
reparably damage the device! Please do not attempt
this procedure without first consulting a member of the
technical staff!

5. Analysis

Determine the cutoff value of the retarding voltage for
each of the filters, and assess the random and systematic
errors of each determination. Plot the cutoff voltages

FIG. 3: Figure (a): electrons will travel in a straight
direction when emitted for Vretarding=0. Figure (b)
electron trajectories are nonlinear for finite retarding

voltages.

against the center frequency of the filter bandpass. Sug-
gestion: You can probably make more reliable determina-
tions of the change in cutoff voltage from one wavelength
to the next if you normalize your current data so that the
zero-voltage values are all the same. Plots of normalized
current versus retarding voltage will then show clearly
the effect of photon energy on the cutoff voltage. Com-
pute h and φ from your plots and estimate the random
and systematic errors, taking account of the effects of the
errors in the cutoff determinations on your evaluation of
the slope and intercept. One significant problem lies in
the observation that the current decrease is not linear
close to the cutoff voltage. Consider Figure 3 case (a)
and (b) below for easy visualization.

Discuss in detail how the cutoff is determined.

If you can use two different methods, the difference
in h and φ will give you a lower limit of the systematic
errors.

5.1. Topics which may come up during oral exams

1. The wave-particle duality of photons and electrons.

2. The potential energy in eV of an electron as a func-
tion of distance from a smooth conducting plane.

3. Classically consider a metal atom (d = 0.3 nm)
bathed in radiation of intensity 1 mW m−2. How
long does it take to accumulate enough energy to
overcome φ = 4 eV? How can you disprove the
classical estimate?

6. Statistical Exercises

1. From your (hopefully) independent (what does that
mean?) measurements, estimate the variance.

2. With these random errors, fit your plots of current
I vs. retarding voltage Vr to the following func-
tional form:

Ifit(Vr) = aVr + b. (6.2)

for two cases: (a) the data as recorded by you and
(b) after scaling the data and errors to I0 = 1 nA.
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[1] A. Melissinos, Experiments in Modern Physics (Academic
Press, 1966).

[2] P. Baumeister and G. Pincus, Sci. Am. pp. 58–75 (????).

APPENDIX A: EQUIPMENT LIST

Manufacturer Description URL

Thermo Oriel Low-Pressure Hg Lamp oriel.com

Thermo Oriel Hg Line Filters oriel.com

Thor Labs Optical Components thorlabs.com

Leybold Photocell leybold-didactic.de

APPENDIX B: UV SAFETY

Ultraviolet radiation (UVR) is emitted from low pres-
sure mercury vapour. The mercury vapor emits UVR
when an electrical discharge is passed through it - most
of the energy emitted is at a wavelength of 254 nm.
This lies in the UVC portion of the spectrum (180 -
280 nm). In the case of fluorescent lighting, the 254
nm radiation is used to excite a phosphor which coats
the inside of the glass envelope of the lamp. The phos-
phor will re-emit at visible wavelengths (different phos-
phors produce different colours), and any UVC which
is not absorbed by the phosphor will be absorbed by
the glass wall of the lamp. However, the mercury dis-
charge will also emit at other wavelengths - notably at
365 nm, which lies in the UVA (315 - 400 nm). This
UVA radiation may not be absorbed by the phosphor,
and much of it will pass out through the lamp walls
into the environment. For more information on UV ra-
diation, see the Health Physics Society site at http:
//www.hps.org/hpspublications/articles/uv.html

http://www.hps.org/hpspublications/articles/uv.html
http://www.hps.org/hpspublications/articles/uv.html
http://www.hps.org/hpspublications/articles/uv.html
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Poisson Statistics

MIT Department of Physics
(Dated: September 5, 2011)

In this experiment you will explore the statistics of random, independent events in physical mea-
surements. The random events used in this study will be pulses from a scintillation detector exposed
to gamma rays from a radioactive source. The measurement will be compared to Poisson or Gaus-
sian distributions which often govern the spread of physical data. A computer simulation using
Monte-Carlo techniques will provide comparison for different numbers of events and give a demon-
stration of “normal” statistical fluctuations. This comparison technique is widely used in modern
physics.

1. Preparatory Questions

1. Describe how a scintillation counter works, starting
from the entrance of an energetic charged particle
or photon, and ending with an electrical pulse at
the output of the photomultiplier. Why are subse-
quent signals independent?

2. Suppose the mean counting rate of a certain de-
tector of random events is 2.1 counts per second.
What is the probability of obtaining zero counts in
a one-second counting interval? What is the most
likely interval between successive pulses?

3. Given the formula for the Poisson distribution
(Eqn. (2.2)), prove each of the following:

• 〈x〉 = µ

• 〈x2〉 = µ(µ+ 1)

• 〈(x− µ)2〉 = µ

where 〈x〉 signifies the mean value of x.

4. Plot the frequency distribution of counts when the
average counts per interval is 1.5.

5. Puzzler: Some experiments have painfully slow
counting rates that try the experimenter’s soul and
make him or her question the performance of even
the most reliable equipment. Suppose you are run-
ning an experiment that yields no counts in 11
hours and two counts in the 12th hour. Give a
quantitative answer to the question: what is the
likelihood that the equipment is malfunctioning?

2. Theory of Poisson Statistics

A sequence of independent random events is one in
which the occurrence of any event has no effect on the
occurrence of any other. One example is simple radioac-
tive decay such as the emission of 663 KeV photons by
a sample of 137Cs. In contrast, the fissions of nuclei in a
critical mass of 235U are correlated events in a “chain re-
action” in which the outcome of each event, the number
of neutrons released, affects the outcome of subsequent
events.

A continuous random process is said to be “steady
state with mean rate µ” if

lim
T→∞

(
X

T

)
= µ (2.1)

where X is the number of events accumulated in time T .
How can one judge whether a certain process does, in-

deed, have a rate that is steady on time scales of the
experiment itself? The only way is to make repeated
measurements of the number of counts xi in time inter-
vals ti and determine whether there is a trend in the
successive values of xi/ti. Since these ratios are certain
to fluctuate, the question arises as to whether the ob-
served fluctuations are within reasonable bounds for a
fixed rate. Clearly, one needs to know the probability
distribution of the numbers of counts in a fixed interval
of time if the process does indeed have a steady rate.
That distribution is known as the Poisson distribution
and is defined by the equation:

P (x;µ) =
µxe−µ

x!
(2.2)

which is the probability of recording x counts (always an
integer) when µ (generally not an integer) is the expected
number, the mean rate times the counting time interval.
It is easy to show that the standard deviation of the
Poisson distribution is simply

√
µ, that is, the square

root of the mean. Derivations of the Poisson distribution
and its standard deviation are given in References [1, 2].
You should study and understand binomial, Poisson and
Gaussian distributions and their limits of application.

3. Experiment

In the first part of this experiment you will set up a
scintillation counter, expose it to gamma rays from a ra-
dioactive source (and ubiquitous cosmic rays), and record
the frequency distribution of the numbers of counts in
equal intervals of time. This will be repeated for four
situations with widely different mean count rates, ap-
proximately 1, 5, 10, and 100 counts per second. You
only know the “real” average rate at the end, but you
should aim for these values within 25%. The experi-
mental distributions and their standard deviations will
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FIG. 1: The setup for measuring the number of counts
from a random process (radioactive decay) in a given
time interval. An oscilloscope (not shown) is used to

monitor the proper functioning of the system.

be compared with the theoretical distributions and their
standard deviations.

Later, you will generate Poisson distributions with a
Monte Carlo simulation and then compare them with the
ones produced by nature in your counting measurements.

3.1. Setup to Measure Poisson Statistics

Set up the scintillation counter as shown in Figure 1.
Expose the detector to gamma rays from a 137Cs or 60Co
laboratory calibration source (a 1/2′′ × 5′′ plastic rod
with the source embedded in the colored end). The volt-
age applied to the photomultiplier should be ∼ +1000
volts. Feed the output of the photomultiplier to the
“INPUT” connector on a charge-sensitive preamplifier.
(Some photomultiplier assemblies are provided with a
built-in preamplifier.) Use the oscilloscope to view the
output of the preamplifier and draw it in your lab note-
book. Note especially the rise and decay time of the
signal as well as the peak amplitude and polarity.

The output of the preamplifier is then connected to
the “INPUT” connector on the back or front of the am-
plifier. The amplified signal should be taken from the
“UNIPOLAR OUT” connector on the front of the ampli-
fier, and fed to the “POS IN(A)” connector on the scaler.
(“Scaler” is another name for a “counter”.) Set the am-
plifier to have a moderate gain and for positive pulses.
Again, note the pulse properties on the oscilloscope and
record them in your notebook. Start with the scaler’s
discriminator set at its lowest value, usually about 0.1V.
Set the scaler to repeatedly acquire for about 5 seconds,
display the result, and then start again.

Note: Throughout Junior Lab, you should pay close at-
tention to the polarities of applied and detected voltages.
Incorrectly setting the polarity on an oscilloscope trigger
can be very frustrating!

3.2. Procedure

Examine the output of the amplifier on the oscillo-
scope (sweep speed ∼ 1µsec/division, vertical amplitude
∼ 1 volt/division, or whatever settings allow you to best
observe the signal) to confirm the proper performance of
the measurement chain. Adjust the gain of the amplifier
to produce signal pulses of ∼ +3 volts. If you trigger the
scope on the “rising edge” of the pulses and set the trigger
level to ∼ +3 volts, you should see a signal which starts
on the left-hand side of the scope display at ∼ 3 volts,
rises to a maximum of about ∼ 5 volts, goes negative and
finally levels off at zero. If you also set the discriminator
on the counter to 3 volts, there should be an approxi-
mate one-to-one correspondence between pulses counted
and pulses displayed. Ask for assistance on this step if
you are unfamiliar with the operation of an oscilloscope.

Incidently, even without a “check source” nearby, you
should see signals due to “cosmic rays” at the rate of ∼ 1
cm−2 min−1.

You can control the counting rate by adjusting the dis-
tance of the source from the scintillator, by varying the
high voltage supplied to the photomultiplier, varying the
gain of the amplifier, or changing the threshold level of
the discriminator. Arrange things to yield four different
mean count rates of approximately 1 sec−1, 4 sec−1, 10
sec−1, and 100 sec−1.

Record your instrumental settings and prepare
tables in your lab notebook for recording the
count data in a neat and compact form1.

At each of these four approximate rates, record the
counts for 100 repeated one-second intervals directly into
your lab notebook. Then, for each of these four approxi-
mate rates, also record the number of events in one con-
secutive run of 100 seconds.

3.3. Analysis

The following analysis requires the use of repetitive
arithmetic on the collected data set. You could use either
Matlab or any other preferred tool on Athena.

a) For each of the four runs calculate and plot the cu-
mulative average, rc(j), of the rate as a function of
the sequence number, j, of the count. “Cumulative
average” means the quantity

rc(j) =

∑i=j
i=1 xi∑i=j
i=1 ti

. (3.1)

1 Whenever experimental conditions feasibly allow, it is desirable
to use your own mind and hands to record data, rather than an
automated data logger, as this process more readily engages the
senses and other mental pathways, bringing about a more active
awareness and understanding of the experiment.
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where xi is the number of counts detected in time
ti. For a process which is truly steady with mean
rate µ, rc(j) should converge to µ in the asymp-
totic limit. Include error bars to demonstrate con-
vergence.

b) Calculate the mean and standard deviation of each
of the four 100-trial distributions, and compare the
results with the mean and standard deviation of
the corresponding 100-second run. Are they con-
sistent?

c) Using the mean rate just determined, calculate the
predicted Poisson frequency distribution (renor-
malized by multiplying by the total number of read-
ings). Make a plot with “frequency bins” (counts
per 1-second acquisition) on the horizontal axis and
“number of events” (frequency of occurrence) for
each bin on the vertical axis, as in Figure 2. Plot
your data and calculated distribution on the same
axes for ease of comparison. Be sure to include
error bars on the data points.

d) For the observed distribution with the lowest mean
rate (∼1 sec−1), take the highest deviation from
that mean and test whether you might be justified
in concluding that the counter was malfunctioning.
Remember that there were 100 opportunities for
such a deviation to occur.

e) For large values of µ you can use the Gaussian ap-
proximation to the Poisson formula as given by the
relation

lim
µ→∞

p(x;µ) =
1√
2πµ

e−(x−µ)
2/2µ. (3.2)

Compare the Poisson and Gaussian distributions
for both µ = 4 and µ = 10. Which is preferred? At
what confidence level?

3.4. Simulating Poisson Statistics Using Matlab

You can run the suimulations on your own copy of Mat-
lab (you can download the scripts from the experiment
website) or the Athena version.

To access the scripts on Athena, add the Junior Lab
Locker by typing

%> setup 8.13

Within Matlab type

>>addpath /mit/8.13/matlab

The two MATLAB scripts, poisson.m and
poissonsim.m, can also be downloaded off the Ju-
nior Lab website and added into MATLAB’s working
directory.
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FIG. 2: A frequency distribution of observed numbers
of counts. The renormalized Poisson distribution for the

observed mean value is also plotted.

For information on how to use either one, type help
poissonsim from within Matlab. For example type
poissonsim(3,20) which will generate a 20 sample pop-
ulation with a mean of 3. The solid curve represents the
theoretical poisson distribution while the red dots repre-
sent the simulated sample population. The poissonsim
function will output two vectors: the frequency of each
rate (i.e. the counts in each bin shown in the graph) and
the count rates for all of the trials.

1. Generate 1000-trial distributions for your MEA-
SURED mean rates (≈ 1, 4, 10, 1000).

2. Next, generate ten 100-trial distributions for each
of the four mean counts you obtained in the ex-
perimental section using the scintillation counters.
Record the mean values and standard deviations
for each set of 10 distributions.

3. Compare the Monte Carlo-generated Poisson distri-
butions with the experimental ones you obtained
with the scintillation counter. The mean of the
standard deviations should converge (within some
statistical error) to the square root of the mean that
is input to the Poisson generator.

4. Determine the error on µ and σ from the scatter of
the ten distributions.

4. Statistical Exercise

The following questions are a subset of the full analysis
discussed in Section 3.3.

1. For the 100 one-second measurements at ∼4 Hz,
evaluate the average and the variance and compare
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the results with the mean and standard deviation
of the long 100 second run. Are they consistent?

2. Plot the distributions of your measured data sets
and compare to Poisson distributions of your ex-
perimental means. Are the variances in agreement
with the theoretical expectation?

3. Fit the ∼4 Hz data set to both gaussian and poisson
functions. Which is preferred? At what confidence
level?

5. Suggested Theoretical Topics for Oral Exam

1. The Poisson distribution, its origin from the bino-
mial distribution and the limits of its application.

2. The Gaussian approximation to the Poisson distri-
bution P (x;µ) for x� 10.

3. The differential distribution in the time lag between
successive random pulses that occur at a fixed av-
erage rate.

[1] P. Bevington and D. Robinson, Data Reduction and Er-
ror Analysis for the Physical Sciences (McGraw-Hill, 2003),
3rd ed.

[2] A. Melissinos and J. Napolitano, Experiments in Modern
Physics (Academic Press, 2003), 3rd ed.

APPENDIX A: MONTE CARLO GENERATION
OF A RANDOM VARIABLE

Suppose we have a source of random numbers with a
uniform distribution from 0 to 1. If we represent the uni-
form distribution by q(y), so that q(y′)dy′ is the prob-
ability that the random number y lies between y′ and
y′ + dy′, then obviously q(y′) = 1. The problem is how
to convert a given random number y from this uniform
distribution into a random variable x with a specified dis-
tribution p(x′) such that p(x′)dx′ is the probability that
the variable x will turn up with a value in the infinites-
imal interval between x′ and x′ + dx′. We must find a
relation between the distributions of y and x such that
p(x′)dx′ = q(y′)dy′ = dy′.

To do this we compute, analytically if possible but oth-
erwise numerically, the integral

P (x) =

∫ x

−∞
p(x′)dx′ (A1)

which is the probability that the random variable will
turn up with a value in the interval between −∞ and x.
From this definition is follows that

lim
x→∞

P (x) = 1 (A2)

since the probability that the random variable will turn
up with some value is unity. Given the random number y,
we set y = P (x) and solve for x. To find the distribution
of the resulting value of x we differentiate this expression,

using the rule for differentiating a definite integral with
respect to its upper limit, and obtain dy = dP (x) =
p(x)dx. Thus the distribution of x selected in this way is
identical to the one specified.

Figure 3 shows how this works graphically. From the
figure it is evident that a horizontal line at a random
position yi on the y-axis is more likely to intersect the
P (x) function where it is steeper than elsewhere; i.e.,
where the differential probability is larger than elsewhere.

FIG. 3: Illustration of Monte Carlo selection of a
random variable with a specified differential probability

distribution is shown above. yi is a random number
between 0 and 1. xi is the value of the variable for

which the integral probability distribution equals yi.

The Poisson probability, being a discontinuous func-
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tion, is handled in a similar way, but with a summation
rather than an integral. Given a value of µ < 88 and a
random number y, the Poisson Simulator find the small-
est value of x for which P (x;µ) > y, where P is defined
by the formula

P (x;µ) =

x′=x∑

x′=0

p(x′;µ) (A3)

in which p(x′;µ) is the Poisson probability specified
above. That value of x is the desired Poisson variate.

Inspect the Matlab .m files where the algorithm is de-
scribed in more detail.
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Transmission of Electromagnetic Pulses

MIT Department of Physics
(Dated: September 5, 2011)

The purpose of this experiment is to acquaint you with some of the principles involved in the
manipulation of electrical pulses. You will study reflections and measure termination resistances
and signal propagation velocities for different cables.

1. Preparatory Problems

1. Derive an expression for the characteristic
impedance of a coaxial cable with a central wire of
radius a, a cylindrical sheath of radius b, and with
the space between the inner and outer conductors
filled by a non-conducting medium with a dielectric
constant κ. See for example References [1–3].

2. A certain transmission line attenuates pulses at a
rate of 2.5% per meter. Derive an exact formula for
the pulse amplitude as a function of distance along
the cable. Make a plot of the amplitude of a pulse
as a function of position along the transmission line
from 0 to 200 meters. (The formula is the solution
of an elementary differential equation.)

3. Draw the predicted shape and amplitude of an ideal
rectangular pulse of amplitude -1 volt and dura-
tion 10 nsec after it has traversed a coaxial cable
10 m long and returned following reflection from a
shorted end.

2. Introduction

Many experiments involve the production and mea-
surement of electrical pulses. Depending on the length
of the signals ∆t, the approaches are very different:

• ∆t ≥ 1ms → do with your wires whatever you
want. If the signals are small, you may want to
use shielded cables.

• 1ms ≥ ∆t ≥ 0.1µs → typical for computers. Use
ribbon cable, “twisted pair,” or cables without ter-
mination.

• 100ns ≥ ∆t ≥ 0.1ns → region of interest for “fast”
signals to be studied here. Cables must be termi-
nated or undersirable reflections will occur. In Ju-
nior Lab, these types of signals are often present
with photomultiplier signals but the subsequent
amplifiers slow the signals into the middle category.

One may wish to measure a pulse’s rate, distribu-
tion of amplitudes, the relation of their occurrence times
relative to other pulses, etc. Such measurements are
done with oscilloscopes, multichannel analyzers, ampli-

fiers, discriminators, coincidence circuits, etc.1, which
may or may not be working properly. It is essential,
therefore, to gain facility in the use of test equipment
such as pulse generators and oscilloscopes so that the per-
formance of a pulse-measuring apparatus can be checked,
point by point. Electrical pulses are piped around a labo-
ratory via transmission lines of one sort or another, with
consequent delays, attenuations, and reflections. It is
important to understand these effects and to know how
to measure them. This experiment is a study of pulses
in transmission lines. You will learn that you must ter-
minate all transmission lines properly so as not to be
deceived by false signals.

3. EXPERIMENTS

3.1. Reflection of electrical pulses from
discontinuities in a transmission line

Connect a pulse generator to the input of a digital
oscilloscope by means of a T-connector and attach a long
RG58 cable to the third side of the T, as shown in Figure
1. Various terminating resistors will be connected to the
far end of the long cable.

Use the fixed output on the pulse generator to produce
pulses of amplitude ∼5.0 V and the shortest possible du-
ration (∼4–30 nsec). Be careful to set the repetition rate
slow enough that you are not confused by overlapping
pulses. Set the oscilloscope controls so that you can ob-
serve the pulse produced by the pulse generator. Set the
oscilloscope to whatever settings help you best visual-
ize the signal of interest. For example, try setting the
vertical amplifier control at 2 V/div, the sweep speed
(commonly called the time base) at 50 nsec/div, and the
trigger at internal, normal, and positive slope. Be sure
to record to observed waveforms, including the settings
used to view them, in your lab notebook.

1 Oscilloscopes display the signals V (t) vs. t as described in the
Appendix. Multichannel analyzers (MCAs) sort signal events of
different amplitudes into bins: that is, they make histograms.
Amplifiers enlarge the signal but may also alter it’s shape.
Charge sensitive pre-amplifiers produce an output pulse propor-
tional to the amount of charge generated in a detector. Discrim-
inators emit a logical (square V(t)) signal if the input exceeds
a certain threshold. Coincidence units produce a logical pulse if
two (or more) inputs overlap in a certain window of time.



Id: 004.pulses.tex,v 1.31 2011/09/01 21:15:41 spatrick Exp 24

Potentiometer ("Pot")

watch what happens if you lengthen them.
Keep these connections as short as possible;

Long (~100’) length of RG-58 cable

Resistance "R"
Terminating

Oscilloscope
Generator
Pulse

FIG. 1: Experimental setup to test the effect of various
terminating resistances on the transmission and

reflection of electrical pulses in coaxial cable.

Observe the primary pulse from the pulser and describe
the pulse reflected from the end of the cable when the end
is 1) open, 2) shorted, and 3) terminated with a variable
resistor with values in the range from ∼10–200 Ohms.
You will typically see one reflection2. Use the variable re-
sistor to determine the characteristic impedance of RG58
cable, and then repeat the above steps RG59 cable. Take
enough statistically independent measurements to find a
mean and a variance of each characteristic impedance.

Connect another piece of cable to the end of the first
cable by clip leads (i.e. a very bad connector) and observe
the effects of the discontinuity in the transmission line.
Remember to graph the observed waveforms in
your notebook and label both time and amplitude
axes!

3.2. Speed and attenuation of pulses in
transmission lines.

Determine the velocity of pulses in the cable by mea-
suring the difference in the arrival time of the direct and
reflected pulses at the oscilloscope. Record sufficient data
and other information to permit an accurate assessment
of the random and systematic errors in your determina-
tions. Compare the velocity in the cable to the velocity
of light in vacuum, and explain the cause of the differ-
ence. Add at least three cables of known length to make
a plot of time versus length.

Measure the attenuation of RG58 cable by comparing
the amplitude of the pulse reflected from the open end of
the cable with and without an additional length joined
by a BNC connector3. Note that this strategy isolates
the effect of the delay in the cable from possible compli-

2 Why not n + 1? Hint: Pulse generators have an internal resis-
tance, too (50Ω).

3 Also observe how the shape of the pulse changes.

cating effects of the discontinuities in the circuit at the
connections to the oscilloscope and pulser.

3.3. Propagation of CW in a transmission line

Utilizing a function generator, explore the phenomena
of a sinusoidal continuous wave (CW) propagating in a
transmission line with various terminations and frequen-
cies. Use two channels on the oscilloscope to measure the
wave amplitudes Vinput and Voutput. Be sure the output
is terminated. Why is this necessary?

Produce a graph of attenuation versus frequency for
RG58 transmission line. Obtain attenuation values for
frequencies ranging from 1 Hz to 10 MHz. Think about
how this frequency dependence for CW signals explains
the change in shape of pulsed signals observed in the
previous section.

The function generator should default to a 1 kHz sine
wave with an amplitude of 100 mV when you turn it on.
Make sure you are using the OUTPUT terminal and not
the SYNC terminal. To adjust the frequency, first press
the Freq button. The current frequency will then be
displayed. The flashing digit can be adjusted with the
knob in the upper right hand corner. You can also enter
the desired frequency by pressing Enter Number, enter-
ing the numeric value of the frequency and then pressing
the the button for the appropriate units. For instance,
you can hit the ∧ button for MHz.

A common means of expressing attenuation is in

dB/100 ft where dB = 20log
[
Vout/Vin

]
when the cable

termination is matched to its characteristic impedence.
(e.g. -3 dB corresponds to an voltage ratio of 0.707.)

4. ANALYSIS

1. Determine the characteristic impedance Z for
RG58 and for RG59 coaxial cables. Compare your
values versus published values. Assess the random
and systematic errors.

2. Determine Vprop for RG58 and RG59 coaxial ca-
bles. Compare your values versus published values.
Assess the random and systematic errors.

3. Determine the attenuation in dB/m for RG58 and
RG59 coaxial cables. Compare your coefficients
versus published values. Assess the random and
systematic errors.

5. Possible Topics for Oral Exam

1. The step function voltage on an open cable.

2. The partial differential equations for the voltage
between the inner and outer elements of a coaxial
transmission line carrying a signal.
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3. Estimate the attenuation at low frequencies (Ohm’s
law). Why does the attenuation grow rapidly at
very high frequencies?

4. The fraction of the energy of a pulse reflected at the
junction of two coaxial cables with different radii of
the inner and outer conductors.

6. Statistical Exercise

1. With the setup described in Section 3.1, obtain
25 independent (explain how you ensure their in-

dependence) measurements of the characteristic
impedance for RG58 and RG59. Plot the two dis-
tributions and calculate their mean and variance.

2. Measure the speed of signals in RG58 by using at
least 4 different cable lengths. Again, make suf-
ficient measurements to obtain an estimate of the
(random) error for the next step.

3. Plot delay vs. cable length and prove a linear rela-
tionship by fitting your data to a model.

[1] A. French, Vibrations and Waves (Norton, 1971).
[2] G. Bekefi and A. Barrett, Electromagnetic Vibrations,

Waves and Radiation (MIT Press, 1977).
[3] W. Leo, Techniques of Nuclear and Particle Experiments

(Springer, 1992).

APPENDIX A: VISUALIZATION OF
ELECTRICAL SIGNALS BY OSCILLOSCOPES

A schematic of an analog oscilloscope is shown in Fig-
ure 2. A hot wire in the cathode ray tube emits electrons,
which are accelerated by an annular anode by about 20
kV. Two pairs of crossed capacitors then deflect the elec-
tron beam (AA′ horizontally, BB′ vertically). The fluo-
rescent screen emits green light when hit by the electron
beam. By applying a linearly rising voltage to AA′, a
horizon line is produced on the screen (aa′). The (am-
plified or attenuated) signal applied to BB′ produces a
vertical deflection bb′ for the time duration of ∆τ . This
process is started by the trigger, which is initiated by a
signal becoming larger than the threshold (adjusted by
the knob control), which can be positive or negative.

a a’

A’

e
B

B’
b’

b
∆τ

A

FIG. 2: Schematic of how an analog oscilloscope works.

Modern digital oscilloscopes utilize a similar principle,
but operate differently; they sample the incoming volt-
age periodically (after receiving a trigger event), then a

computer is used to display the resulting data as a func-
tion of time, at various user-selectable voltage and time-
scales. You may be using such a modern oscilloscope in
this experiment. More information about the digital os-
cilloscopes used in Junior Lab is available in the online
e-library.

APPENDIX B: EQUIPMENT LIST

Manufacturer Description URL

HP-Agilent 100 MHz Scope agilent.com

BNC 8010 Pulse Generator berkeleynucleonics.com

Various 100’ RG/58U Cable

Various 100’ RG/59U Cable



Id: 004.pulses.tex,v 1.31 2011/09/01 21:15:41 spatrick Exp 26



Id: 004.pulses.tex,v 1.31 2011/09/01 21:15:41 spatrick Exp 27



Id: 01.compton.tex,v 1.60 2011/09/01 22:30:56 spatrick Exp 28

Compton Scattering

MIT Department of Physics
(Dated: September 5, 2011)

You will observe the scattering of 661.6 KeV photons by electrons and measure the energies of the
scattered gamma rays as well as the energies of the recoil electrons. The results can be compared
with the formulas for Compton scattering, considering the quantized photon like a particle.

1. PREPARATORY QUESTIONS

1. Describe four distinct ways in which 2 MeV photons
can interact with matter.

2. Derive an expression for the final energy of a photon
of initial energy E scattered from a free electron,
initially at rest, at an angle θ from the forward di-
rection, according to the Compton kinematics (see
Reference [1]).

3. Sketch and explain the principle features of the
pulse-height spectrum obtained from a NaI scintil-
lation counter irradiated with 661.6 KeV photons
(see Reference [2]). Give a qualitative reason for the
scatter of energy values measured with these coun-
ters observing the ‘line’. The pulse height spectrum
from 661.2 keV gamma’s into the counter will show
a line and a continuum. Explain both features with
a sketch and give keV values for the line and for the
Compton edge.

Suggested schedule:

• Day 1 - Familiarize yourself with the equipment and
do Section 4.1

• Day 2 - Repeat Section 4.1 and do Section 4.2. By
the end of this session you should have verified that
Escat + Erecoil ≈ 662keV for at least two angular
positions.

• Day 3 - Perform Section 4.3

• Day 4 - Repeat portions of the experiment that
need improvement.

2. INTRODUCTION

By 1920 the successes of the quantum theories of black-
body spectra (Planck, 1901), the photoelectric effect
(Einstein, 1905) and the hydrogen spectrum (Bohr, 1913)
had established the idea that interactions between elec-
tromagnetic radiation of frequency ν and matter occur
through the emission or absorption of discrete quanta of
energy E = hν. The next crucial step in the development
of the modern concept of the photon as the particle of
electromagnetic radiation was taken by Arthur Compton
in the interpretation of experiments he initiated in 1920

to measure with precision the wavelengths of X rays scat-
tered from electrons in materials of (low atomic number)
[1, 3]. The phenomena of X-ray scattering had already
been studied intensively. It was known that the penetrat-
ing power of X rays decreases with increasing wavelength
and that X rays are less penetrating after being scattered
than before, which indicated that the scattering process
somehow increases their wavelength.

Compton’s idea was to use the recently developed tech-
nique of high-resolution X-ray spectrometry, based on
measurement of the angle of Bragg reflection of X-rays
from crystals, to measure precisely the wavelengths of
the scattered X-rays [4]. Irradiating a carbon target with
an intense collimated beam of monochromatic molybde-
num Kα X-rays and using an ionization chamber as the
detector in his spectrometer, Compton found that the
spectrum of scattered X rays had two distinct spectral
lines, one at the wavelength of the incident X-rays and
another at a wavelength that was longer by an amount
that depends on the angle of scattering. The scatter-
ing without a wavelength shift was readily explained
by the classical theory of coherent scattering of electro-
magnetic waves from electrons bound in atoms. How-
ever, the classical theory provided no explanation of the
wavelength-shifting “incoherent” scattering process. The
phenomenon of Bragg reflection used in Compton’s mea-
surements was a clear demonstration of the wavelike char-
acter of the X-rays. Nevertheless, Compton put forward
the apparently contradictory idea that X-rays, known to
be electromagnetic radiation of very short wavelength,
interact with electrons like particles of zero rest mass so
that their energy E = hν = hc/λ and momentum p are
related by the relativistic equation for particles of zero
rest mass, namely p = E/c. He calculated according
to relativistic mechanics the relations between the initial
and final energies and momenta of an X-ray quantum
and a free electron involved, like billiard balls, in an elas-
tic collision. In this way he arrived at the formula for
the “Compton shift” in the wavelength of incoherently
scattered X-rays, namely (see [2], Appendix A)

∆λ =
h

mc
(1− cos θ) (2.1)

where m is the mass of the electron, and θ is the an-
gle between the trajectories of the incident and scattered
photon.

The agreement between Compton’s experimental re-
sults confronted physicists and philosophers with the con-
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ceptual dilemma of the particle-wave duality of electro-
magnetic radiation. In particular, how was one to un-
derstand how each particle of light in a Young interfer-
ence experiment goes simultaneously through two slits?
The dilemma was further compounded when, in 1924,
DeBroglie put forward the idea that material particles
(i.e. electrons, protons, atoms, etc.) should exhibit wave-
like properties characterized by a wavelength λ related to
their momentum p by the same formula as that for light
quanta, namely λ = h/p. In 1927 the wave-like properties
of electrons were discovered by Davisson and Germer in
experiments on the reflection of electrons from crystals.
A particularly interesting account of these developments
is given by Compton and Allison in their classic treatise
[5].

2.1. Experimental Goals

In this experiment you will measure:

1. The energies of Compton-scattered gamma-ray
photons and recoil electrons,

2. The frequency of occurrence as a function of angle
θ,

3. The total cross section of electrons for Compton
scattering.

The results of 1.) will be compared with the predictions
of Compton kinematics. The results of 2.) will be com-
pared with the predictions of the classical (Thomson)
theory of X-ray scattering and with the Klein-Nishina
formula derived from relativistic quantum theory.

The experimental setup employs a radioactive source
of 661.6 keV photons from 137Cs, and two NaI scintilla-
tion counters. One counter serves as the scattering target
and measures the energy of the recoil electrons; the other
counter detects the scattered photons and measures the
energy they deposit. Both the target and scatter coun-
ters have a scintillator consisting of a 2”x2” cylinder of
Thallium-activated sodium iodide optically coupled to a
photomultiplier. A 661.6 keV photon traversing sodium
iodide has about equal probability of undergoing photo-
electric absorption and Compton scattering. A photo-
electric absorption event is a quantum mechanical tran-
sition from an initial state consisting of an incident pho-
ton of energy E and a neutral atom to a final state. This
event therefore consists of an excited ion with a vacancy
in one of its inner shells where the electron that was for-
merly bound and a free “photoelectron” with kinetic en-
ergy E−W , whereW is the binding energy of the electron
in the neutral atom. The energetic photoelectron loses
its energy within a small fraction of a µsec by multi-
ple coulomb interactions with electrons and nuclei in the
sodium iodide crystal, and a certain fraction of the lost
energy is converted into scintillation light. Meanwhile,
the ion from which the photoelectron was ejected loses

its energy of excitation through a cascade of transitions
that fill the vacancy in its electronic structure and give
rise to lower energy photons or electrons that, in turn,
lose their energy in the crystal and generate additional
scintillation light.

The total amount of scintillation light produced is
closely proportional to the total amount of energy dissi-
pated in all these processes. As a consequence the pulse
height spectrum of a NaI scintillation counter exposed to
monoenergetic gamma rays shows a distinct ”photoelec-
tric” peak which facilitates accurate calibration in terms
of pulse height versus energy deposited. The counters
can then be used to measure the energies of scattered
photons and recoil electrons. The following background
topics should be studied in [2, 6]:

1. Kinematics and theory of Compton scattering;

2. Properties of 137Cs;

3. Scintillation counters and the interpretation of
pulse height spectra (see preparatory question 3);

4. Radiation safety;

5. Parameter and error estimation [6].

3. EXPERIMENTAL ARRANGEMENT

The experimental arrangement for the Compton ex-
periment is shown schematically in Figure 1. The 2”x2”
cylindrical “recoil electron” or “target” scintillator de-
tector (Canberra Model 802-3/2007), is irradiated by a
beam of 661.6 keV photons emitted by ≈ 100 µcuries
(≈ 1 µgram!) of 137Cs located at the end of a hole in a
large lead brick which acts as a gamma-ray “howitzer”.
If a photon entering the target scintillator scatters from
a loosely bound, effectively free, electron, the resulting
recoil electron may lose all of its energy in the target,
causing a scintillation pulse with an amplitude propor-
tional to the energy of the recoil electron. If the scattered
photon emerges from the target scintillator without fur-
ther interaction, and if its trajectory passes through the
NaI crystal of the ”scattered photon” detector, it will
have a substantial probability of depositing all of its en-
ergy by a single photoelectric interaction or by a sequence
of Compton scatterings and photoelectric interactions.
This will produce a scintillation pulse that contributes
to the “photopeak” of the pulse height spectrum. The
median channel of the photopeak in the multichannel an-
alyzer (MCA) display is a good measure of the median
energy of the detected photons. If the scattered photon
undergoes a Compton scattering in the scatter scintilla-
tor and then escapes from the scintillator, the resulting
pulse, with a size proportional to the energy of the Comp-
ton recoil electron, will be registered in the Compton re-
coil continuum of the spectrum. Several experimental
details are considered in [7–11].
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FIG. 1: Schematic diagram of the experimental arrangement for measuring Compton Scattering. Note that while
most of the equipment (NIM Crate, NIM modules and detectors are on the lab bench, the two MCA cards are

installed inside of the computer.

In the experimental arrangement described by [2]
(p.256) the target is inert material (not a detector).
The scatter counter suffers background due to gamma-
ray photons leaking through the lead from the 137Cs
source, cosmic rays, and radioactive isotopes in the envi-
ronment which is suppressed by the use of very heavy (≈
200 lb) lead shielding around the source and the scatter
counter. Without such shielding and without any elec-
tronic tricks the pulses produced by Compton scattered
photons would be buried in the background. In a better

way, the compton scattered signal can be discriminated
from the background using time coincidence techniques,
as described in the following paragraphs.

In our experiment (see Fig. 1) both the recoil electron
detector and the scattered photon detector are scintil-
lation detectors. Circuits are arranged so that a pulse
from a detector is accepted for pulse height analysis by
the multichannel analyzer (MCA) only if it is coincident
(within a fraction of a µsec) with a pulse from the other
detector. Coincident pulses occur when a gamma-ray
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photon produces a Compton-recoil electron in the recoil
electron detector, and the Compton-scattered photon is
subsequently absorbed in the scattered photon detector.
The two nearly simultaneous pulses produced in such
an event are amplified and fed through inverters (Ortec
Model 533) to constant fraction discriminators (CFD’s)
(Canberra Model 2126) whose threshold is user selectable
between -50 mV and -1 V through a 10-turn potentiome-
ter. (The inverters are required because the amplifiers
are designed to put out positive pulses, whereas the CFDs
are designed for negative input pulses.) CFD’s employ
a historically interesting method to achieve precise tim-
ing described in Appendix B. Your experiment does not
require this accuracy, and it is superceded by modern-
electronics.

3.1. Coincidence Techniques

A true Compton event will produce coincident (within
2 µs) signals in both detectors. If the logic (square) dis-
criminator outputs overlap, the coincidence (‘AND’) pro-
duces an output ‘YES’ signal to the gate generator, which
in turn notifies the MCA in the computer to analyze the
pulse heights generated by this event. Most likely it is
a ‘Compton Event’, however there is a chance that two
different (background) events accidently occured within
the overlap time 2τ given by the discriminator outputs.
From a scatter counter with rate ns and target counter
with rate nt the accidental rate

nacc = 2τnsnt (3.1)

is small unless you have ‘noise’ increasing ns or nt. A
good method to set up the coincidence uses a Na22 source
placed in between the two detectors. But for Compton
coincidences, consider that for small θ, the recoil (target)
energy and hence signal are small. If the signals are below
your discriminator threshold, you fail to see coincident
Compton events at small θ.

3.2. Gating the MCA

In principle, the gate should tell the MCA ‘ahead of
time’ that a good event is coming. With the present
electronics, this is not possible so we try to catch the
majority of the signal (see Fig. 2) including the peak.

The analog pulse shown is derived from the ‘unipolar’
output of the amplifier. The ‘bipolar’ has positive and
negative peaks and is more tricky to use. Nuclear physi-
cists use it at ‘high’ rates.

When you think you have everything working correctly,
and before you commit to a long series of measurements,
check the performance at the extreme values of θ, say 0◦

and 150◦. At both positions the peaks in the spectra due
to the scattered photons and the recoil electrons should
stand out clearly. If they don’t, then more adjustments

FIG. 2: Schematic representation of the proper time
relation between the photomultiplier tube signal

(amplified and inverted), whose pulse height is to be
measured, and the coincident gate pulse produced by

the Gate and Delay Generator NIM module. The
coincident gate pulse needs to arrive before the peak of
the pulse and persist for ≥ 0.5µsec after the pulse peak.

must be made to achieve correct operation of the coin-
cidence gate logic. In coincidence mode, the MCA his-
togram is not updated unless an appropriate gate pulse
arrives at the gate input during the rise of the signal
pulse. During the “dead time” required for each pulse
height analysis (≈ 8µsec for the MCA’s used in Junior
Lab) the input to the pulse height analyzer is held closed
by a “disable gate” so that the arrival of a second pulse
will not interfere with the current analysis. More details
of the specific MCA’s (Perkin-Elmer Model Trump-PCI)
used in Junior Lab are available in the Junior Lab Filing
Cabinet or in the online e-library.

4. Experimental Procedure

Keep the lead door of the gamma-ray howitzer closed
when not in use. The purpose of the procedures described
below is to acquaint you with the operation of the equip-
ment, particularly the coincidence scheme which permits
the experiment to achieve a good signal/background ratio
with a minimum amount of shielding. The steps below
suggest a sequence of tests and adjustments to achieve
that purpose, but you should feel free to devise your own.

4.1. Experimental Calibration

Set up and test the experimental arrangement with
511 keV annihilation photons from a 22Na calibration
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source. 22Na, a radioactive isotope of sodium, decays to
an excited state of 22Ne by emission of an anti-electron,
i.e. a positron. The excited neon nucleus, in turn, de-
cays quickly to its ground state by emission of a 1.27
MeV photon. Meanwhile, the positron comes to rest in
the material in which the sodium isotope is embedded,
combines with an electron to form an electrically neutral
electronic atom called positronium (discovered at MIT in
1947 by Prof. Martin Deutsch). The latter lives about
10−7 s until the electron and positron annihilate yield-
ing two 511 keV (= mec

2) photons traveling in oppo-
site directions. Thus 22Na is a handy source of pairs of
monoenergetic photons traveling in opposite directions
which can be used to test a coincidence detector system.

1. Set up the NaI recoil electron and scattered pho-
ton scintillation detectors as illustrated in Figure
1. Turn on the power to the NIM bin, HV sup-
plies, MCA and oscilloscope. Keep the door on the
137Cs source howitzer closed to reduce the intensity
of 661.6 keV photons at the detectors.

2. Adjust the gain of the scattered photon detector
and calibrate it. Apply high voltage to the scatter
counter photomultiplier (≈+1000 VDC). Using the
Maestro-32 MCA software, turn off the coincidence
gate requirement on the MCA. Place the 22Na cal-
ibration source near the scattered photon detector
and examine the output of the scattered photon
amplifier signal (following the pre-amplifier AND
the amplifier in series) with the oscilloscope. Ad-
just the gain so that the amplitude of the pulses
produced by 511 KeV annihilation gamma rays is
about +7 volts. (You might see that a few very
high energy pulses saturate the amplifier result-
ing in ‘square’ peaked signals. Since the Compton
scattering experiment will measure only energies <
662 KeV, it is okay to discriminate against these
pulses.) Determine the gain setting of the primary
amplifier at which non-linear response begins, as
indicated by a flattening of the top of the pulse as
viewed on the oscilloscope. Then reduce the pri-
mary amplifier gain sufficiently to assure a linear
response up to energies safely above the 662 keV
energy of the 137Cs photons.

Now feed the output pulses from the amplifier to
the input of the MCA and acquire ∼30 seconds of
pulse height data using the acquisition presets sub-
menu. Examine the Energy spectrum/histogram of
pulses from the scattered photon detector and ad-
just the gain of the amplifier so that the median
channel of the photopeak for 511 keV photons is ≈
2/3 of the full scale MCA range (check that this is
set to 2048 channels). Calibrate the counter with
other plastic rod calibration gamma-ray sources. A
good set consists of 137Cs (661.6 KeV), 22Na (511
KeV), and 133Ba (356, 302 and 81 KeV plus other
lines) each of which produce easily identified pho-
topeaks. Be aware that too high a counting rate

will spoil the spectrum by overlapping signals and
amplifier saturation.

Write in your lab notebook a succinct de-
scription of what you are doing along with
the data so that you can later recall exactly
what you did and repeat it quickly. You will
have to redo the calibration at the start of
each lab session because other users will have
changed the settings. When you have identi-
fied the photopeaks and are confident about the
counting rates, measure the median channels of the
photopeaks and plot the average median photopeak
channel numbers versus the photon energies on mil-
limeter graph paper to provide yourself with a cal-
ibration curve. The simplest way to estimate the
random error in a measurement of the median is to
repeat it five or more times and then evaluate the
root mean square (rms) deviation of the successive
measurements from their mean value.

3. Adjust and calibrate the recoil electron ‘target’ de-
tector in the same way.

4. Send the amplified recoil electron and scattered
photon signals to the Inverter module and then
send the resultant negative polarity pulses into the
two discriminators. Examine the positive output
pulses generated by the units.

5. Send the two Discriminator outputs into Channels
1 and 2 of the Coincidence module and examine its
output. (It’s easiest if you temporarily use a single
detector signal to trigger both discriminators for
this test.)

6. Send the output from the Coincidence circuit into
the Gate Generator Unit and explore its operation.
Adjust the delay of the delay amplifier so the coin-
cidence gate pulse arrives at the MCA gate input
during the rise of the analog signal pulse (see Fig-
ure 2). A good way to verify the action of the gate
pulse is to feed the pulses from one of the amplifiers
to both CFD inputs. This will ensure that a coin-
cidence pulse is generated at relatively high rates.
(Students should play with the gate generator con-
trols, specifically delay and width, to verify the op-
eration of the MCA card coincidence circuitry as
described in Figure 2).

7. Test the coincidence logic. Place the 22Na source
between the two scintillators so that pairs of annihi-
lation photons traveling in precisely opposite direc-
tions can produce coincident pulses in the two coun-
ters. For this test it is interesting to reduce the gain
by a factor of 2 so that the photopeak of the 1.27
MeV photons can be seen on the MCA spectrum
display. Compare the spectrum with and without
the coincidence requirement, and observe the effect
of moving the source in and out of the straight line
between the scintillators in order to observe hits by
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a pair of annihilation photons. Take careful notes
and be sure you understand what you observe. Do
not hesitate to ask for help if you need it. In each
of the above steps it is very useful to sketch a
picture (or generate a bitmap using the Ag-
ilent digital oscilloscopes) of the waveforms
taking particular note of their amplitudes,
rise and fall times and temporal relation-
ships with other signals (e.g. gates)

4.2. Compton Scattering Using 137Cs

This section details the measurement of the energies
of the scattered gamma rays and the recoil electrons as
functions of the scattering angle θ.

1. Align the primary gamma-ray beam from the 137Cs
source in the howitzer. Position the howitzer and
the scatter counter so that the source (at the inside
of the hole in the lead howitzer) and the scatter
counter scintillator are at opposite ends of a diam-
eter of the round platform, with the source ≈40 cm
from the center of the scintillator. (Keep careful
notes about the exact geometry you choose for the
setup so you can return to it if necessary at a later
time.) Open the door of the howitzer and mea-
sure the rate of pulses in the photopeak from the
scatter counter as a function of its position angle.
In other words, measure the “profile” of the beam
and determine θ = 0. Check that the beam profile
is symmetric about a line from the source through
the center of the turntable to insure that the tar-
get counter will be uniformly illuminated when it
is placed at the center.

2. Adjust the discriminators of the CFDs to insure
that they will generate coincident pulses whenever
a Compton scattering occurs in the target scintil-
lator with a scattering angle in the range you wish
to cover. Position the NaI target counter over the
center of the turntable at a height such that the
axis of the beam intersects the mid-plane of the
scintillator. For a preliminary test, connect the (in-
verted) output of the target amplifier to the inputs
of both CFDs. Simultaneously connect the output
of the target amplifier to the “INPUT” BNC con-
nector on the MCA card in the PC. Connect the
output of the coincidence circuit to the gate gen-
erator module and the output of the gate genera-
tor to the “GATE” BNC on the MCA card. Us-
ing the Maestro-32 software package, set the dis-
criminators as low as possible without getting into
the rapidly rising spectrum of photomultiplier noise
such that the accidental coincidence rate would ri-
val the true coincidence rate (see preparatory ques-
tion 5 above). Start a spectrum accumulation and
test the effects of changing the delay of the gate
pulse with respect to the signal pulse.

3. Measure the median energy E′γ of scattered
photons and the median energy Ee of recoil
electrons as functions of the position angle θ′

of the scattered photon detector. With both
the source in the howitzer and the scintillator of the
scattered photon detector located ≈40 cm from the
recoil electron detector, set the position angle of the
scatter counter at 90◦. With the coincidence re-
quirement enabled, accumulate a spectrum of scat-
tered photon detector pulses on the ‘scatter’ MCA
and a spectrum of recoil electron detector pulses on
the ‘target’ MCA and measure the median channel
of the pulses in the photoelectric peaks. Repeat this
dual measurement at several position angles from
just outside the primary beam profile to as near to
180◦ as you can get. A good strategy is to take
data at widely separated position angles, say 90◦,
30◦, 120◦, 150◦ and then fill in when you have time.
Plot the raw results (median energy against posi-
tion angle) as you go along to guide your measure-
ment strategy. It is wise to check the calibration
between each measurement by switching the (soft-
ware based) GATE setting to ‘OFF’ and record-
ing in your notebook the median channels of the
photopeaks produced by 661.6 KeV photons from
the 137Cs calibration source, the 511 KeV photons
from 22Na, and the 356 KeV and 81 KeV photons
of 133Ba.

Record the integration time of each measurement
to find the rate as a function of θ to later compare
with Thomson’s classical prediction.

4.3. Scattering Cross Section Measurements

In this part of the experiment, you will measure the
total scattering cross section per electron in plastic. The
plastic scintillator blocks used as absorbers in this mea-
surement are made from polyvinyltoluene (C10H11, den-
sity = 1.032 g/cc, www.bicron.com) composed of almost
equal numbers of carbon and hydrogen atoms. The most
tightly bound electrons are in the K-shells of the car-
bon atoms where they are bound by 0.277 KeV, which is
small compared to 662 KeV. In fact, many other materi-
als can be used providing approximately ‘free’ electrons.
This material resembles most modern plastic scintilla-
tors. You will determine their quantum efficiency, e.g.
how often they ‘see’ γ-rays. Place the scatter counter at
0◦ and remove the target counter from the beam. Mea-
sure the counting rates in the 661.6 KeV photopeak of
the NaI scatter counter with no absorber and with three
or more different thicknesses of plastic scintillator placed
just in front of the exit hole of the howitzer. Determine
the thicknesses (in g cm−2) of the scintillator blocks by
measuring their dimensions and mass. Plot the natu-
ral logarithm of the measured rate as a function of the
thickness and check the validity of your data by observ-
ing whether the data points fall along a straight line as
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expected for exponential attenuation. Question: Why is
it better to place the absorbers as near as possible to the
source rather than just in front of the detector?

5. ANALYSIS

1. Plot Etarget + Escatter vs. θ.

2. Compare your results on the angular dependence
of energies of the scattered photons and the re-
coil electrons with the predictions of the Compton
formula. Since the relation between the scattered
photon energy E′γ and the scattering angle θ, is
non-linear, one can anticipate that a plot of the
measured energy versus position angle could be fit-
ted only by a curve. However, an easy manipula-
tion of the Compton formula yields a linear rela-
tion between 1/E′γ and 1-cos θ. Plot 1/E′γ against
(1 − cos θ) with appropriate error estimates. On
the same graph plot the calculated curve of 1/E′γ
against (1− cos θ) based on the Compton formula.
Do a similar analysis of the recoil electron data on
a separate graph. Plot 1/Ee against a function of
θ such that the expected relation is linear. Com-
ment on the degree of conformance of the prediction
to your experimental results and discuss possible
causes of any systematic differences.

3. Plot the measured ‘rate’ as a function of θ and com-
pare to the classical Thomson prediction.

4. Compute the total interaction cross section per
electron. The attenuation of a collimated beam of
particles by interactions in a slab of material of
thickness x (cm) is described by the formula

I(x) = I0e
−µx (5.1)

where I0 is the initial intensity and µ is the to-
tal linear attenuation coefficient (cm−1). In plastic
scintillator the attenuation of 661.6 keV photons is
due almost entirely to Compton scattering. Under
this circumstance the total attenuation coefficient
is related to the Compton scattering cross section
per electron, which we call σtotal, by the equation

σtotal =
µ

ne
(5.2)

where ne is the number of electrons/cm−3 of the
material. To find µ from your data, you should
fit an exponential directly to the data, determining
the best-fit parameters and their errors. Alterna-
tively, you may plot the natural log of the measured
values of I/I0 against x . Then determine the slope
(and its error) of the straight line that best fits the
data by linear regression. In either case, calculate
the number of electrons cm−3 of scintillator (CH)n,
and find σtotal. Compare to the classical Thomson
calculation and to the theoretical result of Klein-
Nishina [12].

5.1. SUGGESTED THEORETICAL TOPICS

1. Relativistic mechanics and the Compton shift.

2. Derivation of the Thomson differential and total
cross section for unpolarized photons.

3. Discuss the ‘correct’ Klein-Nishina prediction.
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FIG. 3: Schematic representation of Compton
Scattering.

APPENDIX A: DERIVATION OF THE
COMPTON SCATTERING FORMULA

Consider the interaction between a photon with mo-
mentum vector pγ (and zero rest mass) and an electron
initially at rest with rest mass me as depicted in Figure
3. Call p′γ and p′e the momenta of the photon and the
electron after the interaction, respectively. By conserva-
tion of momentum, the relation between the initial and
final momenta is

pγ = p′γ + p′e (A1)

Rearranging and squaring both sides we obtain

p2γ + p′
2
γ − 2pγ · p′γ = p′

2
e (A2)

The total relativistic energy E and momentum p of
a particle are related to its rest mass m by the invari-
ant relation p · pc2 − E2 = −m2c4. By conservation of
energy,

pγ +mec = p′γ +

√
m2
ec

2 + p′2e (A3)

Rearranging and squaring both sides, we obtain

p2γ+p′
2
γ−2pγp

′
γ+2mec(pγ−p′γ)+m2

ec
2 = m2

ec
2+p′

2
e (A4)

Subtraction of (2) from (4) and rearrangement yields

mec(pγ − p′γ) = pγp
′
γ − pγ · p′γ (A5)

Finally, dividing both sides by mecpγp
′
γ , we obtain for

the relation between the energies of the incident and the
scattered photons the equation

1

E′γ
− 1

Eγ
=

1

mec2
(1− cos θ) (A6)

where θ is the angle between their final momentum
vectors.

APPENDIX B: INTRODUCTION TO TIMING

A timing instrument marks or measures the precise
occurrence of nuclear events. In practice, the release of
electrons, which result from the detector’s absorption of
a particle’s energy, occurs after the actual event; how
long after is dependent upon the detector and how it is
employed. The electronics processing this output further
modifies its characteristics. All of these factors must be
accounted for, in addition to the problem of noise, when
making precise and highly resolved timing measurements.

Sharp timing (2 τ overlap) reduces the number of ‘ac-
cidentals’. The primary limitations in this (and other)
experiments is the time slew. A pulse of lower amplitude
reaches the threshold of the discriminator later. The co-
incidence time has to be enlarged to ensure overlap with
the other ‘normal’ (earlier) signal. The time slew is large
because the rise time our amplifiers is ‘slow’. To over-
come timing inaccuracies from ‘slew’ and differing pulse
shapes, the constant fraction technique is used.

FIG. 4: Manipulation of input signal for constant
fraction discrimination.

Constant fraction timing involves the inversion, delay
and recombination of the signal to create a zero crossing
mark. However, rather than adding the inverted and
delayed signal to the original to achieve cancelation, some
fractional part of the original is used to insure baseline
crossover. As is evident in Figure 4, the crossover point
is independent of amplitude of the input signal. The
constant fraction discriminator (CFD) fixes its reference
at this point.

1. Constant Fraction Discrimination

CFDs have an advantage over simple discriminators
in experiments that require the detection of coincidences
with high time resolution. A simple discriminator pro-
duces a logic output pulse that starts at some fixed time
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after the voltage at the input rises above a set value.
Therefore pulses of similar shape but different peak am-
plitudes trigger a simple discriminator at different times
relative to the occurrence times of the events that gen-
erate the input pulses. A CFD also produces a logic
output pulse if the voltage of the input pulse exceeds a
set value; its special virtue is that the output pulse starts
at a fixed time after the input pulse has risen to a cer-
tain constant fraction of its peak value, independent of
the magnitude of that peak value. If the input pulses
have a fixed shape, but different amplitudes, then the
delay between the event that produces the input pulse
and the logic output pulse from the CFD will be a con-
stant, which can be adjusted by the “WALK” control.
The positive +5VDC outputs of the CFDs are fed to a
coincidence circuit that produces a logic pulse when all
of its enabled inputs see input pulses within the selected
resolving time (user selectable within two ranges: “fast
coincidence” 10-100ns or “slow coincidence” 100-1000ns).
The output pulses from the coincidence circuit are fed
to a gate generator and delay module, after which, the
suitably stretched and delayed gate signal is sent to the
“gate” input of the MCA.

The amount of delay and the gate width in the delay
module should be adjusted to meet the requirements of
the coincident gate mode of the MCA. This requirement
is that the gate pulse begin before the peak of the analog
input signal and last for at least 0.5µsec beyond the peak.
The coincidence gate requirement suppresses background
events and makes the Compton scatter events stand out
clearly in the resulting pulse height spectrum without the
use of heavy shielding.

APPENDIX C: SCINTILLATION COUNTER
EFFICIENCY CALCULATIONS

A significant complication in the analysis of the data
on the differential cross section is the fact that the target
is not “thin”, i.e. the mean free paths of the incident
and scattered photons suffer substantial attenuation as
it passes through the target material, and the scattered
photons suffer substantial attenuation in their passage
out of the target. The effects of these attenuations on
the counting rate obviously depend on the position of
the detector. A count must therefore be taken of these
thick target effects in order to derive accurate values of
the differential cross section from the measured counting
rates at various scattering angles.

As in all cross section measurements, the necessarily fi-
nite sizes of source, target and detector introduce into the
analysis geometrical factors that require laborious mul-
tidimensional integrations for their evaluations. In our
experiment we have a divergent beam of photons from a
radioactive source of finite size that can interact at var-
ious depths in the target within certain ranges of solid
angle to produce scattered photons that traverse the de-
tector would be a convolution of the differential cross

section with geometrical and attenuation factors repre-
sented by a multiple integral over at least ten variables
with hideous limits of integration. The only practical
way around this kind of mess in particle physics experi-
ments where the highest possible precision is required is
the “Monte Carlo” technique in which the sequence of
physical processes from emission to detection is sampled
by use of appropriate distribution functions to represent
the various possible processes, and random numbers to
select the outcome of each process.

Here we outline an approximate analytical treatment
of our problem based on several simplifying assumptions.
The formulation is suitable for numerical computation on
a modest computer. We will consider only single scat-
tering events. We call R and H the radius and length,
respectively, of the cylindrical scintillators which are the
sensitive elements of the target and scatter counters. We
assume that the source is so far from the target scintil-
lator that the incident beam may be considered uniform
and parallel (i.e unidirectional). We assume that the dis-
tance D of the scatter counter scintillator from the target
is so large that the detected portion of the scattered radi-
ation may be considered to comprise a parallel (but not
uniform) beam.

Consider the scatterings that occur within a solid ele-
ment of volume rdφdrdz at a position in the target scin-
tillator with cylindrical coordinates r,φ,z. As can be de-
duced with the aid of Fig 5, the distance x of this element
from the point of entry of the incident photons into the
target scintillator is given by the expression

x = R{[1− (q sinφ)2]
1
2 − q cosφ}, (C1)

where q = r/R. Similarly, for photons scattered from
the point P at the angle θ, the distance y of the element
from the point of exit is

y = R{[1− (q sinψ)2]
1
2 − q cosψ}, (C2)

FIG. 5: Diagram of the Compton scattering geometry.

where ψ = π − θ + φ. We call α the total linear at-
tenuation coefficient (units of cm−1) of the target plastic
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scintillator for the incident photons, β(θ) the total linear
attenuation coefficient of the plastic for photons scattered
at angle θ, and γ(θ) the total linear attenuation coeffi-
cient of the scatter counter NaI scintillator for those scat-
tered photons. The efficiency for detection of scattering
events that occur at a given position in the target scin-
tillator is exp(−βy)[1− exp(−γH)] which represents the
probability that the scattered photon will escape from
the target counter multiplied by the probability that the
scattered photon interacts in the scatter counter.

We must now find the average of this efficiency over
the target scintillator. Recalling the assumption that the
incident beam is parallel and uniform, the weighting fac-
tor is I0 exp(−αx) which is the intensity of the incident
beam at the point of interaction inside the target scin-
tillator. We can now write for the average efficiency the
expression

η(θ) =

∫
exp(−αx) exp(−βy)[1− exp(−γH)]dV∫

exp(−αx)dV
(C3)

where the integrals are computed over the volume of the
target scintillator. We note that η → 1 as α→ 0,β → 0.

The total attenuation coefficients are functions of the
energy of the scattered photon and the energy of the
scattered photon is a function of the scattering angle.
According to the Compton theory,

Eγ(θ) =
E0

1 + (E0/mc2)(1− cosθ) . (C4)

In the energy range from 0.2 to 0.7 MeV, the total at-
tenuation coefficient in sodium iodide can be fairly rep-
resented by the formula

µ = 0.514(
E

100keV
)−0.368 + 5.51(

E

100keV
)−2.78cm−1,

(C5)
and in plastic by the formula

µ = 0.177(
E

100keV
)−0.37cm−1. (C6)

The quantity η can be evaluated as a function of θ by
numerical integration.
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The Franck-Hertz Experiment

MIT Department of Physics
(Dated: September 5, 2011)

These experiments measure two phenomena encountered in collisions between electrons and atoms:
quantized excitation due to inelastic scattering, and ionization. The experiments also provide an
opportunity to explore the thermionic emission of electrons and space charge limited current in a
vacuum tube.

1. PREPARATORY QUESTIONS

1. Considering that the energy of the first excited
state of the mercury atom is about 5.0 eV above
that of the ground state, what is the maximum
amount of energy that an electron with 4.0 eV of
kinetic energy can impart to a mercury atom with
which it collides? Same question for a 6.0 eV elec-
tron.

2. Prepare a plot of the mean free path (in mm) of
electrons in mercury vapor against the temperature
(in degrees Celsius) of the tube in the region of
interest. You should assume the following:

• The cross section of a mercury atom-electron
collision is geometrical (i.e. σ = πR2, where
R is the radius of the outer electronic shell of
the mercury atom).

• The mercury vapor in the tube is in thermo-
dynamic equilibrium with liquid mercury. The
vapor pressure of mercury is tabulated in [? ].

3. Plot the expected curve of current against acceler-
ating voltage in the Franck-Hertz experiment with
mercury vapor, showing the positions of the peaks
and valleys on an absolute voltage scale.

2. Introduction

Franck and Hertz described the first observation of
quantized excitation in 1914, one year after Bohr pub-
lished his theory of the hydrogen atom with its concept of
quantized energy states. They discovered that electrons
moving through mercury vapor with an energy greater
than or equal to a critical value near 4.9 eV can excite
the 2536 Å line of the mercury spectrum. Electrons with
less than the critical energy bounce elastically when they
collide with mercury atoms and fail to excite any elec-
tromagnetic emission. The experiment provided crucial
evidence in favor of the Bohr theory.

A version of the Franck-Hertz experiment, employing
a mercury-filled vacuum tube with four electrodes made
by the Leybold Company, is described in References [?
? ] to which the reader is referred for a discussion of
the physical principles and the measurement objectives
of the Franck-Hertz experiment.

Experiments on the related Ramsauer-Townsend effect
are described in Section 7.

3. Apparatus

The present Junior Lab version of the experiment uses
a different version of the equipment which consists of
a mercury-filled triode and an oven with glass windows
through which one can view the action. A power supply
and control circuit built in the Junior Lab shop provides
adjustable filament voltage for heating the cathode, ad-
justable accelerating grid voltage, and an adjustable re-
tarding voltage. The same triode tube and power supply
are used in the measurement of the ionization potential.

3.1. Mercury Filled Triode

The experiments on the excitation and ionization of
mercury atoms are carried out with a mercury-filled tri-
ode which is a sealed glass envelope containing three elec-
trodes and a drop of mercury.1 The experiments will be
performed with the three configurations of the tube and
associated circuits illustrated in Figure 1 and, in more
detail, Figures 3, 4, and 7. The three electrodes are:

• a cathode which emits electrons when raised to a
temperature of several hundred degrees by applica-
tion of a voltage VF to a heater filament,

• a perforated grid which is set at a positive potential
Vgc relative to the cathode so that electrons emitted
by the cathode are drawn toward it,

• an anode (counter electrode plate) which is con-
nected to an ultra-sensitive Keithley electrometer
for the measurement of the anode current Ia.

In the Junior Lab apparatus, the distance from the
cathode to the perforated grid is 8mm while the distance
between the grid and the anode is small (of order 1mm).

1 Mercury is an ideal element for a study of excitation phenomena
because its vapor is monatomic and its vapor pressure can be
readily controlled over the range useful for this experiment by
adjusting the temperature in the range from room temperature
to 200◦C.
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FIG. 1: Schematic illustrations of the mercury-filled
triode and the voltage control box.

All of the measurements in these experiments can be
made with total tube currents (i.e. cathode current =
anode + grid current) of 1000 nA or less. To prolong the
useful life of the tube care should be taken not to exceed
1000 nA.

3.2. Voltage Control Box

The voltage control box, built by Junior Lab staff, is
used to supply the desired voltages to the mercury-filled
triode. The control box functions as three variable volt-
age supplies, shown in Figure 1:

• the filament voltage VF, which controls the temper-
ature of the cathode

• the accelerating voltage Vgc, between the grid and
the cathode

• the retarding voltage Vga, between the grid and the
anode.

The values for the voltage supplies can be measured
using the “Isolated D.C. Voltmeter” outputs. These out-
puts are designed for use with a voltmeter that does not
have any connection to the wall or ground, i.e. a mul-
timeter. See Section 3.4 for how to connect any of the
circuit outputs to an oscilloscope.

It is wise to start each session by disassembling what-
ever wired-up circuit the previous users may have left.
The only way to know for sure how a circuit is connected
is to wire it yourself.

The control box has four circuit outputs which are
color coded:

• Black is the common ground. It should be con-
nected to the banana jack with the ground symbol
near the anode connection on the oven chassis. This
will establish a common ground.

• Red is connected to different points for different
measurements during the experiment.

• White goes to the ‘K’ side of the filament, which
determines the potential at the cathode. In our
boxes, this is the banana jack on the right side.

• Green goes to the ‘H’ side of the filament, which
determines the electrical power going through the
filament (which has a fairly low resistance).

3.3. Electrometer

An ultra-sensitive Keithley Model 614 electrometer is
used to measure the current from anode to laboratory
ground. (Be sure to check the zero set.) It is es-
sential that the input cable be kept stationary during
measurements. Flexing or moving even high quality ca-
ble may generate currents due to the triboelectric effect.
Make current measurements as follows:

1. Turn the Model 614 on and allow one hour warm
up.

2. Depress ZERO CHECK.

3. Select Volts function and the 0.2 V range. Adjust
the voltage zero potentiometer with a small screw-
driver to obtain a displayed reading of 0.00000. Ad-
justment on this range assures a proper zero on all
other functions and ranges.

4. Select Current function, then appropriate units and
range.

5. Apply input (be sure to use the BNC-Triaxial
adapter!) and release ZERO CHECK.

6. Take measurement.

The electrometer has an analog output (2V full scale
of display) in the back of its chassis which may be con-
nected by a coaxial cable with grounded sheath to an
oscilloscope or other voltmeter. The analog output can
add noise to the signal which can be decreased using a
low pass filter.

3.4. Oscilloscope Setup

In this experiment you may wish to use an oscilloscope
to measure a voltage difference where neither of the mea-
surement points are at the ground potential (most no-
tably, the accelerating voltage). This cannot be done us-
ing a banana-to-BNC connector from the voltage control
box isolated voltmeter output, because the oscilloscope
will make a connection between the negative output and
ground. As neither of the outputs are supposed to be at
the ground potential, this will have adverse effects on the
circuit.
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Instead, a floating voltage measurement may be set up
using two oscilloscope probes:

1. Check that the oscilloscope probes are 10× probes
or that the probes are set to 10×. This is needed to
increase the impedance of the probe-oscilloscope-
ground connection and prevent the measurement
from affecting the control box outputs.

2. On the oscilloscope, go to the Channel 1 menu and
change the probe setting to 10× or 10:1. Do the
same for Channel 2. This tells the oscilloscope you
are using 10× probes.

3. Connect the probes to the voltage difference on the
control box as shown in Figure 2. The probes can
be connected to the actual circuit outputs or the
isolated voltmeter outputs.

4. Use the math function built into the oscilloscope to
subtract channel 1 from channel 2.

The math function displayed is the voltage difference.
When saving data from the oscilloscope, the math func-
tion will not be saved. Make sure both channel 1 and
2 are saved so the math function can be reconstructed
during analysis.

3.5. Oven

Several sections of this experiment require the mer-
cury filled triode be heated above room temperature to
increase the mercury vapor pressure. A ceramic heat-
ing element is situated below the triode and is used to
heat the apparatus. Plug the oven electrical cord into the
variable AC source (variac) and the variac into the wall
outlet. The variac can then be used to set the oven tem-
perature. WARNING: The heater should never receive
more the 75 volts AC.

FIG. 2: The setup necessary to measure a floating
voltage from the voltage control box with an

oscilloscope.

3.6. Grounding

The electrometer and oscilloscope make connections
between the negative input from the BNC cable and
the ground of the electrical outlet. To prevent ground
loops from affecting the experiment, the voltage con-
trol box, electrometer, and oscilloscope must all
share the same ground. This is done by plugging all
three boxes into the same wall circuit. The electrical
outlets in lab are labeled with numbers indicating which
circuit each outlet is on.

4. Thermionic Emission of Electrons and Space
Charge Limited Current

Consider first the situation in the tube connected as
shown in Figure 3. At room temperature the vapor pres-
sure of the mercury is so low that the mean free path
of electrons emitted by the cathode is large compared to
the dimensions of the tube (∼8 mm). When the cathode
is heated by the filament, it emits electrons in a process
called thermionic emission. In thermionic emission, elec-
trons near the top of the Fermi distribution in the metal
penetrate the potential barrier at the surface and escape.
The kinetic energies of the emitted electrons roughly fol-
low a Maxwell-Boltzmann distribution with a mean en-
ergy E0 near kT , where T is the cathode temperature.
In the steady state, with the grid at a positive poten-
tial relative to the cathode the emitted electrons form
a cloud of negative charge over the surface of the cath-
ode. This cloud changes the local electric field, suppress-
ing electron emission by forcing lower energy electrons
back to the cathode. This condition is known as space
charge limited current. The physics of thermionic emis-
sion and space charge limited current is discussed in [? ]
for a tube with ideal cylindrical geometry. Our tube, de-
signed for other purposes, has a different geometry that
does not lend itself to a “clean” experiment in thermionic
emission. Nevertheless the qualitative characteristics of
space-charge limited current can be observed with it.

The first part of the experiment is an exploration of the
dependence of the total tube current on two quantities:
(1) the filament voltage which controls the temperature of
the cathode and thus the emitted current density and (2)
the accelerating potential between the electron emitting
cathode and the grid. You will find a filament voltage
which will be used throughout the rest of the experiment.
The measurements are made at room temperature (20−
25◦C).

4.1. Procedure for Exploring Thermionic Emission

1. Connect the tube as shown in Figure 3. Set the
toggle switch to ‘emission’. Set the filament voltage
VF and the retarding voltage Vga to their lowest
values (∼ 1.2 V and 0V, respectively).
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2. In order to measure the TOTAL tube current, the
grid and anode currents should be summed at the
electrometer input with coaxial cables and a BNC
‘T’ connector. Use a two-prong banana plug-to-
BNC adapter at the grid terminal on the triode
tube, taking care as to which side of the banana
plug adapter is connected to the grid’s banana jack.

3. Set the accelerating voltage Vgc to its highest volt-
age, about 60V. Set the retarding voltage control
so that Vga = 0. Increase VF in small steps until
the total current is between 100 and 1000 nA. Tab-
ulate and plot the total current (grid + anode) Iag
versus VF as you proceed.

4. Set VF at a value for which Iag is in the range 100
- 1000 nA when Vgc ≈ 60 V. Allow several minutes
for the current to stabilize to ensure the current will
remain in the desired range. Do not allow the cur-
rent to remain above 1000nA, as that will shorten
the life of the apparatus.

5. Now, tabulate and plot Iag as a function of Vgc ,
shifting scales on the electrometer as needed. You
may find that the current drifts substantially at
any given setting of VF and Vgc. Don’t panic. The
purpose of this section is to obtain a rough
idea of how the cathode current, i.e. the to-
tal tube current, is affected by the cathode
temperature and the accelerating voltage.
Don’t spend a lot of time trying to perfect
these particular data. Since the tube char-
acteristics change significantly with usage,
you should start each session with a simi-
lar rough check of Iag versus VF with Vgc set
to ∼60V and the oven at room temperature.

5. Ionization Potential of Mercury

In this next experiment the tube is connected as shown
in Figure 4 so that the anode is maintained at a negative
potential of a couple of volts with respect to the cathode.
In this condition it is energetically impossible for any
electrons to reach the anode. When the grid potential
is made positive with respect to the cathode, electrons
are accelerated to the grid. Some pass through the grid
into the space between the grid and anode, but all are
eventually pulled back and collected by the grid. How-
ever, if the electrons that enter the space between the
grid and anode have sufficient energy to ionize the mer-
cury atoms, then the resulting positive mercury ions are
drawn to the anode and a positive current is registered
by the electrometer. The experiment consists of measur-
ing the anode current as a function of the grid-to-cathode
potential difference. Analysis of the current-voltage rela-
tion yields a measure of the ionization potential.

The first task is to determine the optimum oven tem-
perature for measurement of the ionization effect. If the
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FIG. 3: Schematic diagram of the tube and circuit for
measurements of space charge limited current from

thermionic emission. The voltmeter labeled Vgc is the
‘Isolated D.C. Voltmeter’ outputs connected to a

floating (non-grounded) voltmeter.

vapor pressure of the mercury is too low, then electrons
entering the grid-to-anode region with sufficient energy
to cause ionization will have a small probability of colli-
sion (long mean free path) and the ion current collected
by the anode will be too small for accurate measurement.
If the vapor pressure is too high, then electrons will suf-
fer inelastic collisions in the space between the cathode
and grid as soon as their energies slightly exceed the en-
ergy required to raise mercury atoms to their first excited
(not ionized) state and will therefore never attain suffi-
cient energies to cause ionization.

5.1. Ionization Potential: Procedure

1. Connect the tube as shown in Figure 4. Make sure
that you switch the toggle switch to ‘ionization’.

2. Set the filament voltage at the value which gives a
total tube current in the range 100–1000 nA when
Vgc ≈ 60 V, as determined in Section 4.

3. Set the accelerating voltage Vgc to 25 V (mea-
sure with the floating voltmeter connected between
cathode and grid), which is a few volts above the
ionization potential. You should see a blue glow
from the cathode. This is lower-energy photon
emission of the ionizing mercury in the visible spec-
trum. If you do not see this glow, raise Vgc or VF
until you see it, then return to your original set-
tings.
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FIG. 4: Schematic diagram of the mercury-filled triode
in the configuration for measurement of the ionization

potential of mercury. After you complete the
connections check all the potential differences in your

setup with the floating Fluke voltmeter and verify that
they are consistent with the instructions. Note that the

mode-selecting toggle switch should be in the
‘Ionization’ position.

4. Set the retarding voltage so the cathode potential
is 2 V above the anode potential.

5. Measure and plot the anode current as a function
of oven temperature between 30 and 130 degrees
Celsius in steps of 10 degrees and then repeat as it
cools down back to room temperature. (DO NOT
EXCEED 200◦C). Explain what you observe in
terms of the effect of temperature on the mean free
path of the electrons. Discuss the time constants
involved in the determination and setting of the
desired operating temperature and how you might
optimize this in future sessions. In light of your
results, select an optimum temperature for the fol-
lowing measurement of the ionization potential and
adjust the variac so as to maintain that temper-
ature. When you repeat the experiment in later
sessions, you might consider varying the oven tem-
perature to measure its effect.

6. Set the variac at the optimal temperature setting
and tabulate and plot the anode current Ia as a
function of the accelerating voltage Vgc, using the
picoampere and nanoampere scales. To avoid
damaging the tube by a runaway discharge
do not exceed an accelerating voltage of 25 V
in this part of the experiment.

5.2. Ionization Potential: Analysis

Estimate the value and uncertainty of Vgc when ion-
ization just begins in the region between the grid and the
anode. Using results from the subsequent experiment on
the excitation potential, you will be able to correct your
result for the effect of the contact potential.

6. The Excitation Potential of Mercury

In the excitation potential experiment the tube is con-
nected as shown in Figure 7 where the grid is at a higher
potential then the cathode and anode. An idealized de-
scription of the excitation potential experiment can be
made using the following assumptions (all inaccurate in
varying degrees as the previous experiments have shown):

• All electrons emerge from the cathode with zero
velocity.

• The number of electrons emerging from the cathode
is unaffected by the accelerating field between the
cathode and grid.

• The energy of an electron is unaffected by collisions
with the mercury atoms as long as their energy is
below that of the first excited state. Therefore all
electrons at a given position between the cathode
and grid have the same energy.

• All electrons that pass through the grid with ener-
gies less than the retarding potential between the
grid and anode are pulled back and collected by
the grid; all electrons with energy more than the
retarding potential are collected by the anode.

• The inelastic cross section of mercury for electrons
with energies above the critical value is so large
that such electrons travel a negligible distance be-
fore suffering inelastic collision.

Were all these assumptions valid, a plot of anode cur-
rent Ia against accelerating voltage Vgc would appear as
shown in Figure 5. The separation between successive
current increases (or decreases) is equal to the excitation
potential of the first excited state of the Hg atom. The
width of the minima in negative current is determined
by the retarding potential between the grid and the an-
ode. The difference between the accelerating voltage at
the first drop and the excitation potential is the differ-
ence between the work functions of the cathode and grid
metals, i.e. the contact potential between the two metals.
In reality the Ia versus Vgc curve will depart considerably
from the ideal for a variety of reasons.

Figure 6 illustrates the electric field with the voltages
set for the measurement of the excitation potential in the
idealized case of plane parallel electrodes. Also shown
are the trajectories of two electrons, each interrupted by
elastic and inelastic collisions. At gas pressures so low
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FIG. 5: Plot of anode current against accelerating
voltage Vgc implied by set of idealized assumptions. Vcp

is the contact potential.

that the mean free path of the electrons is large compared
with all relevant distances, the motion is ballistic and the
fraction of the electron current intercepted by the grid is
approximately the fraction of area covered by the fine
grid wires. At gas pressure so high that the mean free
path is short compared with all dimensions, including
the wire diameter, the electron orbits jitter along the
field lines. Regardless of their energy, they are mostly
intercepted by the grid since most of the field lines end
there.

FIG. 6: Schematic illustration of the electric field lines
in the measurement of the excitation potential. Two

electron trajectories are illustrated. Elastic and inelastic
scatterings are indicated by “e” and “i”, respectively.

One electron is caught by the grid G. The other makes
it to the anode A.

Note that the lowest excited state of mercury is the
63P0 state, which is metastable: a dipole transition to
the ground state is forbidden. Its lifetime is ∼105 times
that of ordinary allowed transitions. As the electrons

accelerate toward the grid they acquire sufficient ener-
gies to excite a mercury atom in the ground state to the
63P0 state. Because the excited atoms decay slowly, their
number builds up to the point where most of the electron-
mercury atom interactions become elastic collisions off of
excited atoms. The 63P1 state is not metastable and de-
cays immediately by emission of a 2536 Å photon. Franck
and Hertz detected these photons through a window in
their tube. Having measured the threshold voltage V at
which the photons appeared, they could derive a value
for h = V eλ/c . The agreement with the values obtained
previously by Planck, Einstein, and Bohr from their the-
ories of the blackbody spectrum, the photoelectric effect,
and the hydrogen spectrum, respectively, was a striking
and historic confirmation of the new quantum theory.

6.1. Excitation Potential of Mercury: Procedure

1. For the excitation potential measurement connect
the tube as shown in Figure 7. Check all the po-
tentials with the floating voltmeter.

2. Set the oven temperature at so that the mean
free path of the electrons is short compared to the
cathode-grid distance.

3. Set the filament voltage to a value that would give
a total tube saturation current (anode+grid) in the
range 100–1000 nA at room temperature, as mea-
sured in Section 4.

4. Set the retarding voltage at a value between 0.1 and
2 volts. Electrons that pass through the grid with
less than enough energy to overcome the retarding
potential are turned back to be collected by the
grid. Higher energy electrons reach the anode and
are registered as a negative current by the Keithley
electrometer.

5. By hand or by using the ramp function, sweep the
accelerating voltage, Vgc, from 0 to 60 volts and
note the occurrence of maxima and minima in the
anode current Ia (probably best done on the pi-
coampere scale). Measure and tabulate the val-
ues of Vgc at the maximum and minimum values of
the current, and the corresponding maximum and
minimum anode currents. In the measurement of
the excitation potential, the accelerating voltage is
between the cathode and grid. Neither of these
electrodes is at ground potential. Therefor, if Vgc
is measured on the oscilloscope, the measurement
must be set up following Section 3.4.

6.2. Excitation Potential: Analysis

Derive from your data the value and error of the ex-
citation potential. Referring to the plot of Ia vs. Vgc,
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FIG. 7: Circuit arrangement for measurement of the
critical excitation potential.

at what point between each successive pair of minima do
you think the next set of excitation events begins? Derive
an estimate of the value and error of the contact poten-
tial (see [? ? ] for a discussion of the physics of contact
potential) between the cathode and grid. You will need
to correct the measurement of the ionization potential in
section 5 by this quantity.

7. The Ramsauer-Townsend Effect

“The Ramsauer-Townsend effect may be
thought of as a diffraction of the electron
around the rare-gas atom, in which the wave
function inside the atom is distorted in just
such a way that it fits on smoothly to an
undistorted wave function outside” [? ].

The result is a near extinction of the scattered ` = 0
partial wave (s-wave) and a consequent suppression of the
scattering cross section. The effect can be observed only
when it occurs at an energy below that of the first ex-
cited state of the scattering atom. Otherwise it is masked
by inelastic scattering. Noble gases provide especially
suitable targets because they are monatomic, their outer
electrons are in a closed shell, excitation of their lowest
excited state requires a comparatively large amount of
energy, and they do not attach electrons to form nega-
tive ions.

The Ramsauer-Townsend effect was discovered in 1921,
before the invention of wave mechanics in 1926 and the
discovery of the electron diffraction by Davisson and Ger-
mer in 1927. Its explanation in terms of the scattering
of matter waves — first suggested by Bohr and worked

out in detail by Mott and Massey[? ] and others on the
basis of the Schrödinger equation — was one of the early
successes of the new wave mechanics.

The theoretical treatment of the elastic scattering of an
electron by a noble gas atom requires the solution of the
three dimensional Schrödinger equation for a free elec-
tron incident on a spherically symmetric attractive po-
tential. This can be done by the method of partial waves
as explained in various intermediate texts on quantum
mechanics (e.g. [? ? ? ? ]).

The well-known model of a 1-dimensional scattering
problem, solved in many elementary quantum mechanics
texts, is often put forward as exhibiting the essential fea-
tures of wave mechanical behavior that one observes in
the Ramsauer-Townsend effect. The 1-D model bears a
relation to the real 3-D scattering problem that is similar
to the relation which the problem of the energy levels of a
particle in a 1-D box bears to the 3-D problem of the hy-
drogen atom, i.e. suggestive, but fairly distant as far as
numerical agreement is concerned. In the 1-D scattering
problem, one finds the transmission coefficient has max-
ima at a series of discrete energies for both positive and
negative potential wells, whereas in the 3-D case there
is only one maximum, and that only for an attractive
potential.

The present experiment is described in Reference [?
]. A xenon-filled tube is commercially available in the
form of a thyratron switch tube (2D21). The depression
of the scattering cross section at the critical energy is
indicated by the reduction in the intensity of an electron
beam directed from the cathode to the anode.

7.1. Ramsauer-Townsend: Apparatus

The apparatus and circuitry are illustrated schemat-
ically in Figure ??. Electrons emitted from the heated
cathode are accelerated through a small potential differ-
ence toward the “grid” which is is actually a metal box in-
side of which there is no electric field. The electrons that
enter the box “drift” through it, and those that emerge
from the far end are collected by the anode and measured
as a current by the Keithley electrometer. At high vac-
uum, when the xenon gas is condensed on the glass walls
of the thyratron by cooling in liquid nitrogen, the fraction
of atoms emitted by the cathode that reaches the anode
depends only on the geometry of the electrodes. When
the xenon is vaporized, the fraction reaching the anode
is reduced by elastic scatterings which deflect electrons
from the trajectories that would otherwise bring them
to the anode. The amount of the reduction is a mea-
sure of the elastic scattering cross section of the xenon
atoms. One obtains the required data by measuring the
anode current as a function of the accelerating voltage
both with and without the xenon vapor.
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7.2. Ramsauer-Townsend: Procedure

1. With all voltages set to their minimum values, con-
nect the circuit as shown in Figure ??, using the
Keithley electrometer to measure the anode current
and an isolated multimeter to measure the acceler-
ating voltage.

2. Dip the tip of the thyrotron in liquid nitrogen to
freeze out the xenon. (To reduce the likelihood
of cracking the tube by thermal shock the
filament voltage should always be zero when
the tube is dipped into the liquid nitrogen.)

3. With an accelerating voltage of 5 volts increase the
filament heater voltage until the anode current is
10 µA.

4. Leaving the filament voltage at the value just
found, tabulate and plot the anode current (shift-
ing to the nanoampere or picoampere scales where
necessary) as a function of the accelerating volt-
age from 5V down to zero both with and without
the xenon vapor frozen out, taking special care in
the region between 0 and 2V where the interest-
ing phenomenon occurs. It is wise to make your
two sets of measurements at the same sequence of
voltage values so that you can easily calculate the
ratio of currents with and without the xenon frozen
out. C ompute and plot in your lab book the ratio
against the accelerating voltage as you go along to
monitor the trend of the data.
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FIG. 8: Schematic diagram of the 2D21 thyratron and
circuit used in the measurement of the xenon elastic

scattering cross section using low energy electrons. The
trajectories of two electrons are shown, one scattered by

a Xenon atom and the other reaching the anode
undeflected. Adjust the filament voltage so that the
anode current measures ≈ 10µA with an accelerating
voltage of 5.0 V. The vapor pressure in the tube is

approximately 0.05 Torr at room temperature (≈ 0.001
Torr at 77K) and the length of the scattering volume is

0.7cm.

The liquid nitrogen needed to freeze out the xenon is
available in a 240L dewar in the lab. Handle it care-

fully and wear goggles! Do not fill the Dewar flask to
the brim. The tube need only be partially immersed to
bring the xenon below its boiling point.

7.3. Ramsauer-Townsend: Analysis

The discussion of the experiment’s interpretation by
Kukolich [? ] may be a little obscure. The following re-
marks may help. Call I0(V ) the measured current with
the xenon frozen out when the accelerating potential is
V , and I(V ) the measured current at the same accel-
erating voltage with the xenon gas free in the tube. If
every electron scattered by a xenon atom were effectively
removed from the beam, then these two measurements
would be related by the equation

I(V ) = I0(V )e[−nσ(V )l], (7.1)

where n is the number of xenon atoms cm−3, σ(V ) is
the cross section of the xenon atoms for inelastic scatter-
ing the electrons of energy eV, and l is the path length
from cathode to anode. The desired measure of the cross
section would then be

σ(V ) =
1

nl
ln

[
I0(V )

I(V )

]
(7.2)

Actually, not every scattered electron is removed from
the beam due to the poor geometry of the thyratron
tube in this particular application. Therefore the value
of the cross section derived from the simple analysis of
the present experiment, assuming the quantity nl were
accurately known, is somewhat less than the true value
of the total inelastic scattering cross section.

Plot ln
[
I0(V )
I(V )

]
against V . Discuss the sources and

magnitudes of the errors and indicate your error esti-
mates on the plot. Comment on the position of the min-
imum and its relation to the size of the xenon atom.

8. Possible Theoretical Topics for Oral Exam

• Richardson’s law

• Child’s law

• Distribution in energy of electrons emitted by a hot
metal

• Propagation of electrons through Hg vapor

• Transmission of electrons through a rectangular po-
tential well

• Partial-wave scattering theory of the Ramsauer-
Townsend effect
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Relativistic Dynamics

MIT Department of Physics
(Dated: September 5, 2011)

This experiment is a study of the relations between energy, momentum and velocity of relativistic
electrons. Using a spherical magnet generating a uniformly vertical magnetic field to accelerate
electrons around a circular path and into a narrow slit, you will be able to predict relationships
between properties of high velocity electrons. The experiment’s goal is to compare your data with the
models predicted by classical and relativistic dynamics. Additionally you will be able to determine
the value of the electron charge to mass ratio, the electron mass, and subsequently the electron
charge.

1. Preparatory Questions

1. Compare the classical and relativistic relations be-
tween energy, momentum and velocity.

2. The source of high-energy electrons used in this
experiment is the radioactive isotope 90Sr and its
decay product 90Y. Describe the decay process of
these isotopes and the energy spectra of the elec-
trons (beta rays) they emit.

3. How does a semi-conductor diode detector work?
Estimate the charge of the signal from a 280 keV
electron in Si (0.5 eV per pair)

4. How good a vacuum is necessary for the experi-
ment?

5. Compute the voltage required to cancel the mag-
netic force on the electrons in the velocity selector
when the magnetic field is 110 Gauss. Assume the
dimensions of the apparatus given in Figure 1, the
book value of e/m, and the validity of relativistic
mechanics. (The result will be a clue to where in
the selector-voltage range you should search for the
maxima in the counting rate for a typical magnetic
field.)

6. A velocity selector is made of two parallel plates
separated by a distance d = 0.180±0.003 cm. Using
the same parameters of the previous problem, a)
What is the spread in momentum of electrons that
can enter the selector? b) What ∆V do you need
to pass the highest and lowest momentum?

1.1. Units in this lab guide

This lab guide uses Gaussian units in which the force
on a moving charge in a static field is

~F = q ~E +
q

c
(~v × ~B).

The units are:
F—dyne

q—statcoulomb (esu)

B—gauss

E—statvolts cm−1

v,c—cm sec−1

Some useful constants:

e =4.80298× 10−10 statcoulombs

mc2 =511 keV = 8.18727× 10−7 ergs

1 volt =3.336× 10−3 statvolts

1.2. Suggested Progress Check at end of 2nd
Session

With the spectrometer magnetic field set to 100 gauss,
plot the electron count rate at the detector versus veloc-
ity selector voltage (converted to units of β). Also, plot
at least three data points of various kinematic energies
versus β.

2. Introduction

Between 1900 and 1910 the relation between the en-
ergy, momentum and velocity of charged particles mov-
ing at high speeds was a central problem of physics.
The fundamental contradictions between Newtonian me-
chanics and the Maxwell theory of the electromagnetic
field, revealed most dramatically in the failures of the
Michelson-Morley experiment to detect absolute motion
of the earth through the “aether”, barred the way to
a logically consistent understanding of the deflection of
a charged particle by electric and magnetic fields when
the particle is moving at a velocity approaching the ve-
locity of electromagnetic waves. Various formulas were
derived by Abraham, Lorentz, and Poincare. In 1901
Kaufmann, using the new vacuum techniques pioneered
by Thomson, determined the “apparent mass of the elec-
tron” by measuring the deflections of the recently dis-
covered β rays from radioactive substances. There was
considerable confusion as to whether the experimental
results confirmed or contradicted one or another of the
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formulas. Then Albert Einstein, at the time an obscure
25-year-old examiner in the Swiss patent office, provided
a clear and compelling theory of “the electrodynamics
of moving bodies” which came to be called the special
theory of relativity. Among its remarkable predictions
was the slowing of clocks moving at high speed (demon-
strated in the Junior Lab experiment on muon decay),
and the non-classical relations between momentum, en-
ergy and velocity that are demonstrated in the present
experiment [? ].

In classical dynamics a particle acted on by a force ~F

for a time dt over a displacement ~dr gains momentum
~dp = ~Fdt and kinetic energy dK = ~F · ~dr.

According to Newtonian dynamics the kinetic energy
K, momentum ~p, and velocity ~v of a particle are related
by the equations

~p = m~v (2.1)

and

K = p2/2m (2.2)

where p2 = ~p ·~p and m is the inertial mass of the particle.
In classical mechanics there is no limit on the magnitude
of ~v.

According to relativistic dynamics (see [? ], or other
text on special relativity), these quantities are related by
the equations

~p = mγ~v (2.3)

and

E2 = p2c2 +m2c4, (2.4)

where E = K + mc2 = γmc2 is the “total relativistic
energy.” The quantity m is a relativistic invariant and
identical with the classical inertial mass, and γ is the
Lorentz factor defined by the equation

γ = (1− β2)−1/2, (2.5)

where β = |~v|/c . Solving equation (2.4) for the kinetic
energy one obtains

K = mc2

([
1 +

( p

mc

)2]1/2
− 1

)
. (2.6)

In the limit of high velocities where p � mc, equa-
tion (2.6) approaches

K = pc, (2.7)

which is the exact relation between the energy and mo-
mentum of massless particles such as photons and neu-
trinos. For p < mc equation (2.6), expanded by the
binomial theorem, becomes

K =
p2

2m

[
1− 1

4

( p

mc

)2
+ · · ·

]
. (2.8)

In the limit of low velocities (|~v| � c ) where p � mc ,
equation (2.8) reduces to the classical relation expressed
by equation (2.2).

The electromagnetic force on a charged particle is

~F = q

[
~E +

(
~v

c

)
× ~B

]
, (2.9)

where q is the invariant charge, ~E and ~B are the electric
and magnetic field intensities, respectively, and c is the
invariant speed of light. This force law is valid in both
classical and relativistic dynamics. In this experiment
you will measure the effects of electromagnetic force on
the motion of electrons with velocities up to about 0.8c,
and measure directly the relations between ~v, ~p, and K.

Some useful references related to beta-decay, beta-
spectroscopy and this experiment in particular are given
in [? ? ? ? ? ? ].

3. Experimental Setup

The apparatus for the present experiment, shown
schematically in Figure 1, is contained in a vacuum cham-
ber inside a spherical magnet that maintains a uniform
field in the vertical direction. Inside the vacuum cham-
ber are 1) a source of energetic electrons (a minute quan-
tity of 90Sr which emits electrons with a spectrum of
energies up to 0.546 MeV yielding a decay product 90Y
which emits electrons with a spectrum of energies up to
2.27 MeV), 2) baffles that reduce background counts due
to scattered electrons that bounce around the vacuum
chamber, 3) a narrow slit in the baffles at the 90-degree
position around a circular path from the source, 4) a nar-
row slit that defines the radius of curvature of the elec-
trons that enter the velocity selector, and 5) a solid state
PIN diode detector. The velocity selector has a length of
10 cm and the plate separation in the velocity selector is
0.180±0.003 cm. An electron, emitted with a momentum
in a narrow range of magnitude and direction, traverses
a helical path of fixed radius in the magnetic field and
enters the gap between the velocity-selector plates. The
distance from the source to the velocity selector, which
is also the diameter of the electron’s path, is 40.6 ± 0.4
cm. If the voltage, V , between the plates is adjusted so
that the electric force cancels the magnetic force, then the
electron passes through the “velocity selector” in a nearly
straight trajectory and strikes the PIN diode in which a
number of silicon valence electrons proportional to the
energy deposited are promoted to the conduction band
of the semiconductor and collected as a pulse of charge.
The latter is converted by a low-noise preamplifier and
precision amplifier into a voltage pulse with an amplitude
proportional to the deposited energy which is measured
by a multi-channel pulse height analyzer (MCA).

For each of several settings of the magnet current one
measures 1) the magnetic field, 2) the voltage across the
selector plates that yields the maximum counting rate of
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Velocity Selector
Plate Separation = 0.180 ± 0.003 cm

Length = 10 cm

�
�B

Preamp 
Canberra Mo. 2003BT  

Digital Voltmeter 
Fluke 8012A 

Velocity Selector   
HV Supply: 0-5000 V 

Canberra Mo. 2003BT  

Bias Voltage 
Supply: 70 V 

EG&G Ortec 428 

Amplifier 
Ortec 471 

Oscilloscope 

Multi-Channel 
Analyzer 

40.6 ± 0.4 cm
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∼ 3 × 10−8 Torr

PINVS

FIG. 1: Schematic diagram of the electron trajectory in
the apparatus, the particle spectrometer and associated
circuitry. The velocity selector is labeled VS, and the

diode detector PIN.

pulses in the narrow range of pulse height channels of the
MCA corresponding to the energy range of the detected
electrons, and 3) the median channel of the pulse height
distribution. Given these data, the dimensions of the
apparatus, and the energy calibration of the PIN detector
one can determine the momentum, energy, and velocity
of electrons and estimate the values of e/m, m, and e.

4. Theory of the Experiment

In the region between the source and the velocity se-
lector, where only a magnetic field exists, the motion is
described by the equation

e|~v|B
c

=

∣∣∣∣
d~p

dt

∣∣∣∣ = ω|~p| = |~v|p
ρ
, (4.1)

so

B =

(
c

eρ

)
p, (4.2)

where ρ is the radius of curvature of the particle trajec-
tory under the influence of the magnetic force. Placement
of the source, the collimator, and the aperture of the ve-
locity selector on a circle of radius ρ allows only particles
with a momentum in a narrow range around Beρ/c to
enter the velocity selector. In the region between the ve-

locity selector plates ~E, ~B, and ~v are perpendicular to
each other so one can write for particles that experience
zero deflecting force and go exactly parallel to the plates
the relation

eE − evB

c
= 0. (4.3)

The voltage between the velocity selector plates is known
from Faraday’s law,

V =

∮
~E · d~̀, (4.4)

and therefore E = V/d. Hence

β = |~v|/c = E/B. (4.5)

Thus, for any combination of E and B such that E < B,
the velocity selector transmits particles with velocities
near E/B in a narrow range of magnitudes whose width
depends on the geometry of the gap between the plates.

A plot of measured values of B against the ratio E/B
reveals the relation between momentum and velocity. Ac-
cording to the classical equation (2.1), the plot would be
fit by a straight line with a slope of (mc2)/(eρ). Devia-
tion from a straight line as E/B → 1 indicates the failure
of the classical relation between momentum and velocity
as the velocity approaches c. According to the relativity
equation (2.3), a plot ofB against (E/B)[1−(E/B)2]−1/2

should be fit by a straight line with a slope of (mc2)/(eρ).
From the slope and knowledge of the values of c and ρ
one can estimate the invariant quantity e/m.

In the experiment it is a good idea to set the magnetic
field and then determine the voltage between the selector
plates that gives the highest rate of counts of electrons
that traverse the circular path and pass between the ve-
locity selector plates to strike the PIN diode detector.

Note that measurements of E and B alone yield a de-
termination of e/m but neither e nor m separately. This
is characteristic of all experiments involving only electro-
magnetic forces. Why is this so? Consider the analogy
to the problem of determining the ratio of gravitational
to inertial mass of a body moving under the influence
of gravity. (Incidentally, the Johnson Shot Noise experi-
ment in Junior Lab yields the measurement of e.)

The PIN diode detector combines the virtues of an
ultra-thin entrance window and surface dead layer with
a total sensitive thickness sufficient to stop electrons with
several hundred keV of kinetic energy. Thus, with appro-
priate calibration, the PIN diode provides a measure of
the kinetic energy of the detected electrons. Plots of the
kinetic energy against E/B or against [1− (E/B)2]−1/2

reveal the relation between energy and velocity; the slope
of the latter plot yields a value of m (or more conve-
niently mc2 expressed in units of keV in terms of which
the energies of the calibration X and gamma-ray pho-
tons are expressed). A plot of energy against B reveals
the deviation of the energy-momentum relation from the
classical quadratic form E = p2/(2m) toward the linear
form E = pc valid for a particle moving with a velocity
close to c.

5. Apparatus Details

The magnet consists of a stack of circular air-core coils
enclosing a spherical volume and connected in series so as
to produce a current distribution over the surface of the
sphere which is approximately equal to the ideal smooth
distribution required to produce a uniform field inside
the sphere. It turns out that the required distribution of
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FIG. 2: The β-ray Spectra of 90Sr and 90Y. The actual
energy spectrum of the electrons in this experiment will

be distorted by energy loss of the electrons in the
material of the source and in the thin metal covering

over the source.

surface current density is

J(θ, φ) = J0 sin θ, (5.1)

where J0 is related to the magnitude Bi = | ~Bi| of the
uniform field inside by an equation that is left for the
reader to derive (for hints see Appendix A).

The current for the magnet is provided by a stabi-
lized supply whose output can be as high as 200 volts at
low impedance, which means that it can deliver a lethal
shock. Be careful! Turn off the power supply be-
fore touching the magnet. Be sure the cooling
fan is turned on whenever the current exceeds 3
amperes.

The coil assembly is split at its equator. The upper
hemisphere can be lifted with the block and tackle for
access to the spectrometer assembly which is located in-
side the vacuum vessel under a heavy plastic plate.

The β-ray source, 90Sr, decays with a half life of 28 yrs
to 90Y with emission of an electron with a maximum en-
ergy of 0.546 MeV. The yttrium nucleus in turn decays
with a half life of 64 hrs to 90Zr with emission of an elec-
tron with a maximum energy of 2.27 MeV. In each of
these steps, a neutron in the nucleus is transformed into
a proton with the simultaneous emission of an electron
and an antineutrino. Since the two particles emitted in
the β-decay process can share the available energy with
the recoiling nucleus in any proportion consistent with
the conservation of momentum, the energy spectra of the
electrons are continuous from zero to the specified max-
ima (for details see [? ]). A sketch of the energy spectrum
of electrons emitted by a thin 90Sr source is displayed in
Figure 2.

A narrow slit located at the 90-degree position defines
the circular trajectory. The velocity selector consists of
two aluminum blocks mounted with their faces precisely
parallel to each other and tangent to the central electron
path at the entrance to the gap. The voltage for the

FIG. 3: Photon detection efficiencies in silicon.

velocity selector is provided by a high-impedance high-
voltage power supply supplemented by a high-voltage
battery.

The detector is a PIN diode shielded from light by a
thin film of aluminized Mylar. The PIN diode should
be operated with a positive bias of 50 volts (caution:
voltage above 70 volts will destroy it). A graph
of various interaction efficiences for photons in silicon is
shown in Figure 3.

6. Experiment

Check that the vacuum is better than 10−4 torr. A
good vacuum is essential because multiple small angle
scattering of the electrons by residual gas will distort the
trajectories. The rms angle of scattering can be esti-
mated by the following approximate formula:

√
〈θ2〉 =

15 MeV/c

p

√
X

X0
, (6.1)

where p is the momentum measured in MeV/c (1 MeV/c
= 5.34 × 10−17 dyne-sec), X is the amount of material
in the path measured in gm cm−2, and X0 is a constant,
called the “radiation length” and characteristic of the
material. The radiation length of air is 37 gm cm−2.

Set up the pulse height measurement chain, and check
the performance at each stage with the oscilloscope.

The magnetic field is measured with a Hall effect
magnetometer. Before every use of the mag-
netometer check the calibration and the zero
setting. The Hall sensor, fragile and expensive, is
a thin wafer of semiconductor attached to the sig-
nal leads (see Figure 4). The wafer and its attached
wires should be carefully inserted in the protective
aluminum tube and the tube inserted in the plastic
block that can be placed on top of the plastic cover
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FIG. 4: Hall effect sensor. It is found in at the end of
the Hall probe housing.

of the vacuum chamber. To measure accurately the
vertical component of the magnetic field the plane of
the semiconductor wafer must be exactly horizontal. To
achieve this condition raise the top hemisphere of the
magnet just enough to allow you to place the plastic block
with the Hall sensor flat inside the aluminum tube in the
middle of the vacuum cover where you can assume the
field will be almost exactly vertical. Turn on the mag-
net current to 5 amperes. Rock the plastic block to find
the orientation that yields the maximum magnitude of
the field. Then rotate the aluminum tube containing the
Hall sensor so that the maximum reading is obtained with
the plastic block lying flat on the vacuum cover.

Explore the operation of the experiment, and survey
the ranges of the measurements before starting a defini-
tive sequence of measurements:

1. With the magnet current set to give a field of ap-
proximately 100 gauss, measure the precise values
of the field at several positions above the circular
trajectory from source to PIN diode with the mag-
net closed to ascertain the degree of uniformity of
the field and estimate error in the field measure-
ment due to non-uniformity.

2. Calibrate the measurement chain with the X-ray
and gamma-ray emissions of the laboratory calibra-
tion sources. Be aware of the possibility of a zero
offset, i.e., of the 0 channel corresponding to some
positive energy. Specially useful for the calibration
is the 133Ba source stored in the lead container un-
der the spherical magnet (133Ba decays by electron
capture, so in addition to the gamma rays of sev-
eral energies emitted by the daughter nucleus, the
daughter atom, Cs, also emits a K X-ray). You can
find the gamma-ray energies by examination of Fig-
ure 5 taken from http://ie.lbl.gov/toi.html.
The K-shell X-ray energies can be found in various
X-ray tables (e.g. CRC handbook).

The cross section for photoelectric interaction of
high-energy photons of energy E in matter of
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FIG. 5: Decay of Ba-133 to Cs-133 with associated
energy levels. The time on the left is the half-life of the
state, next to it is the state’s spin, and on the right is
the energy in KeV. The arrows denote the transitions
between energy levels in Cs-133, with energies in KeV.
Data taken from the Table of Radioactive Isotopes.

atomic number Z varies approximately as ZE. In
the energy range from ∼ 20 to 100 keV monoener-
getic photons interacting in the silicon PIN diode
produce a pulse-height spectrum with a prominent
photoelectric peak. Above 200 keV the photoelec-
tric interaction cross section is small relative to the
Compton scattering cross section. However, you
can use the high end (Compton edge) of the distri-
bution of pulse heights produced by recoil electrons
from Compton scattering of the photons as a cal-
ibration point. In the text of Melissinos you can
find a discussion of Compton scattering, and the
relevant information for calculating the energy cor-
responding to the Compton edge of the distribution
of pulse heights produced by electrons that recoil
from the scattering events. The first day you
should acquire a 2-3 hour (or overnight if
possible) calibration in order to generate suf-
ficient events at higher energies for a multi-
point calibration. On subsequent days, a 10-
15 minute calibration should suffice at the start of
each lab session. Plot as many calibration energies
as possible against the median MCA channels of
the corresponding spectrum features (photopeak or
Compton edge). To help correctly identify the rel-
evant peaks and Compton edges consult references
[? ] and [? ]. The resultant calibration should be
very linear if you have accuratly recognized all the
features.

3. With the magnet field at approximately 100 gauss,
vary the voltage applied to the velocity selector
around 4.5 kV while looking for evidence of pulses
accumulating in a narrow distribution in the spec-
trum of pulse heights displayed on the MCA screen.
Increase the energy of the selected electrons step by
step by increasing B and V , and adjust the mea-
surement chain so that the pulses recorded with
the highest attainable energies accumulate near the
high end of the spectrum displayed on the MCA.

http://ie.lbl.gov/toi.html
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4. For each of many (∼ 10) values of B spread over
as wide a range as possible, measure the voltage
V that yields the maximum counting rate. The
best procedure is to measure the counting rate as
a function of V around V and at enough values
of V to permit a gaussian fit to the data. Tab-
ulate B, V , and the kinetic energy corresponding
to the median channel number of the pulse-height
distribution. Estimate the errors in each of these
measurements so that you have the necessary data
for error analysis of your results. (Note: the error
of a voltage determination is not the FWHM of the
measured curve of V vs count rate.)

7. Analysis

For each value of B and E = V0/d calculate β = E/B.
Then plot β on the Y axis against B on the X axis.
On the same plot draw curves that show the relations
between these quantities predicted by classical and rela-
tivity dynamics.

For each value of B, calculate e/m according to the
classical and the relativity formulas and plot the results
with error bars against B.

Discuss the effect of the spread in the trajectories of
the detected electrons on the errors in the determinations
of e/m.

Derive a final best value of e/m with a probable error
using the techniques in [? ].

Plot your measured values ofK against p, and draw the
curves predicted by classical and relativity mechanics.

7.1. Possible Theoretical Topics

1. The surface current distribution required to pro-
duce a uniform field inside the spherical magnet.

2. Relativistic dynamics—-i.e., the relation between
v, p, and E.

3. Compton scattering and the photoelectric effect at
gamma-ray energies.

4. PIN diodes as particle detectors.

5. Resolution of the velocity selector.

6. Multiple Coulomb scattering of the electrons by the
residual air in the vacuum chamber.

APPENDIX A: THE SPHERICAL
UNIFORM-FIELD MAGNET

The magnet is an arrangement of currents in coaxial
coils distributed over the surface of a sphere in such a
way as to produce a uniform magnetic field Bi inside the

sphere. The design problem is to find the distribution of
surface current density J(θ, φ) that achieves this condi-
tion.

Everywhere but on the surface of the sphere ∇×B =
j = 0. It follows that B = −∇φm, where φm is the
magnetic potential function, i.e. a solution of Laplace’s
equation ∇ × (∇φm) = ∇2φm = 0. Potential theory
says that a solution of Laplace’s equation that satisfies a
particular set of boundary conditions, such as the distri-
bution of currents on the surface of our sphere, is unique
except for an additive constant. Thus if you can cook up
a solution of Laplace’s equation that does, indeed, satisfy
the boundary conditions, you can be sure you have got
the one and only solution to the problem.

If the field is to be uniform inside the sphere, then

φm(r, θ, φ) = −Biz = −Bir cos θ. r < R (A1)

Outside at large distances it is certainly true that

φm =
m cos θ

r2
r � R (A2)

i.e. the potential must have the form of a dipole poten-
tial at large distances since the field is the sum of con-
tributions from many coaxial circular current loops. The
problem boils down to that of matching an outside dipole
field to the inside uniform field Bi by proper adjustment
of the surface current distribution in such a way as to sat-
isfy the continuity requirements on the radial and tangen-

tial components of ~B. The continuity conditions follow
directly from the two Maxwell equations governing the
magnetostatic field, namely

~∇ · ~B = 0,

~∇× ~B =

(
4π

c

)
~j.

(Note: ~j is the volume current density with dimensions
of statamps cm−2 , whereas what we seek is the surface
current density with dimensions statamps cm−1.)

The rest of the solution is left to the reader.
For the general approach to the solution of such bound-

ary condition problems see, e.g., Jackson [? ] or Griffiths
[? ].

APPENDIX B: EQUIPMENT LIST
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Manufacturer Description URL

Agilent Oscilloscope agilent.com

Sorenson 0-5A Power Supply

RFL Gaussmeter

Bertran 7.5kV Velocity Selector PS

Canberra 2006 Charged Particle Preamp

Hamamatsu PIN Diode

Ortec Amplifier ortec-online.com
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Pulsed-Nuclear Magnetic Resonance

MIT Department of Physics
(Dated: September 5, 2011)

In this experiment, the phenomenon of Nuclear Magnetic Resonance(NMR) is used to determine
the magnetic moments of the proton and the fluorine nucleus. The spin-lattice and spin-spin relax-
ation times are determined from the measurements of free-induction signals and spin echoes. The
variation of relaxation constants with viscosity and concentration of paramagnetic ions is studied.

1. PREPARATORY QUESTIONS

1. Show that a particle with angular momentum ~I and

magnetic moment ~µ = γ~I placed in a uniform mag-

netic field ~B0 precesses with angular frequency ~ω0

(called the Larmor angular frequency) that is in-

dependent of the angle between ~µ and ~B0, given
by

~ω0 = −γ ~B0 ≡ −(gµN/~) ~B0. (1.1)

Here g is the counterpart of the Landé g-factor in
atomic spectroscopy and µN is the nuclear magne-
ton, e~/2mp.

For protons, g = 5.58, so γ = 26.8 × 103 radians
sec−1 gauss−1, which corresponds to a Larmor fre-
quency of 4.26 MHz at 1 kGauss magnetic field.
Note that 1 Gauss = 10−4 Tesla.

2. Derive the classical expression for the potential en-
ergy of a magnetic dipole in a magnetic field.

3. According to quantum mechanics the component
of angular momentum in a given direction, e.g. the

direction of ~B0, is an integer or half-integer multiple
of ~. Write an expression for the energies Um of all
the possible states of a nucleus with total angular
momentum quantum number I in a magnetic field.
Draw on a single diagram the variation of all Um’s
with B0 over the range 0 to 10,000 Gauss for the
proton and the fluorine nucleus.

4. Show on the above diagrams the frequencies of pho-
tons which would cause transitions among the var-
ious levels at B0 = 1770 Gauss. Confirm that the
photon frequencies are the same as the correspond-
ing Larmor frequencies.

5. The samples used in the NMR measurements
contain very large numbers of the dipoles being
studied. These interact with one another and
are in thermal equilibrium at room temperature.
The relative populations of their allowed energy
states therefore follow the Boltzmann distribution,
namely N ∝ e−E/kT . Calculate the fractional dif-
ference in the populations of the magnetic states
of the proton, that is, (n+ − n−)/(n+ + n−), in a
sample at room temperature in a magnetic field of
1770 Gauss.

2. Progress Check

By the end of your 2nd session in lab you should have
a determination of the nuclear magnetic moment of fluo-
rine. You should also have a preliminary value of T2 for
100% glycerine.

3. Theory of NMR

The NMR method for measuring nuclear magnetic mo-
ments was conceived independently in the late 1940’s by
Felix Bloch and Edward Purcell [1–3]. Both investiga-
tors, applying somewhat different techniques, developed
methods for determining the magnetic moments of nuclei
in solid and liquid samples by measuring the frequencies
of oscillating electromagnetic fields that induced tran-
sitions among their magnetic substates resulting in the
transfer of energy between the sample and the measur-
ing device. Although the amounts of energy transferred
are extremely small, the fact that the energy transfer
is a resonance phenomenon enabled it to be measured.
Bloch and Purcell both irradiated their samples with a
continuous wave (CW) of constant frequency while si-
multaneously sweeping the magnetic field through the
resonance condition. CW methods are rarely used in
modern NMR experiments. Radiofrequency (rf) energy
is usually applied in the form of short bursts of radiation
(pulsed NMR) and the effects of the induced energy level
transitions are observed in the time between bursts. It is
experimentally much easier to detect the extremely small
effects of the transitions if this detection phase is sepa-
rated in time from the rf burst phase. More importantly,
as we shall see, it is much easier to sort out the various
relaxation effects in pulse nmr experiments. The present
experiment demonstrates the essential process common
to all NMR techniques: the detection and interpretation
of the effects of a known perturbation on a system of mag-
netic dipoles embedded in a solid or liquid. In addition,
the effects of perturbations caused by the embedding ma-
terial yield interesting information about the structure of
the material.

3.1. Classical Motion of a Single Spin

One can describe the dynamics of a particle with spin
in a magnetic field by drawing an analogy with a gyro-
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scope in a gravitational field. The spin vector precesses
about the field direction and then, as energy is trans-
ferred to or from the particle, the angle between its spin
axis and the field axis gradually changes. This latter
motion is called nutation.

The trouble with the gyroscope analogy would appear
to be that an individual spin which obeys quantum me-
chanics cannot nutate continuously, since its projection
on the field direction is quantized. Bloch, in 1956, pro-
posed a vector model in which he showed that although
nuclear spins obey quantum laws, the ensemble average
taken over a large number of spins behaves like a classical
system, obeying the familiar laws of classical mechanics.
Thus one can gain significant insight by a classical anal-
ysis of a spinning rigid magnetized body in a magnetic
field.

Following the discussion given by [4], we consider the

motion of a nucleus with angular momentum ~I and mag-

netic moment ~µ = γ~I in a magnetic field ~B = ~B0 + ~B1

composed of a strong steady component B0k̂ and a weak
oscillating component B1 sin(ωt)̂ı perpendicular to B0.

Here ı̂, ̂, k̂ are the unit vectors in the laboratory reference
frame x, y, z. The quantity γ is called the gyromagnetic
ratio. (In the present experiment, the strong steady field
has a magnitude of several kiloGauss; the weak oscillating
field is the field inside a small solenoid 2 cm long, wound
with 10 turns, and connected to a crystal-controlled
fixed-frequency generator and wide-band power amplifier
producing an rf alternating current with a peak ampli-
tude of ∼ 1 mA at 5.00 × 106 Hz. A simple calculation
will confirm that under such conditions B1 � B0). The
equation of motion of the particle is

d~I

dt
= γ~I × ~B. (3.1)

If B1 = 0, the motion in a reference frame fixed in
the laboratory is a rapid precession of the angular mo-

mentum about the direction of ~B0 (the z-axis) with the
Larmor precession frequency γB0, as shown in one of the
preparatory questions. To understand the perturbing ef-
fects of the small-amplitude oscillating field on the mo-

tion we first represent it as the vector sum ~B1 = ~Br + ~Bl
of two counter-rotating circularly polarized components
given by the equations

~Br = 1
2 (B1 cosωt ı̂+B1 sinωt ̂)

~Bl = 1
2 (B1 cosωt ı̂−B1 sinωt ̂),

(3.2)

where the subscript l denotes the component rotating in
the direction of rapid precession (the proton precesses in
the left hand direction as can be seen by solving Eq. 3.1),
and r denotes the component rotating in the opposite
direction.

Next we consider the situation from the point of view
of an observer in a reference frame x′, y′, z′ rotating in
the direction of precession with angular velocity ω and

unit vectors:

ı̂′ = cosωt ı̂+ sinωt ̂

̂′ = − sinωt ı̂+ cosωt ̂

k̂′ = k̂.

(3.3)

In this rotating frame ~Br is a constant vector (B1/2)̂ı′,
~Bl is rotating with angular velocity −2ω, and the rapid
precession will have angular frequency γ(B0 − ω/γ), as
though the particle were in a field whose z-component
is B0 plus a fictitious field in the opposite direction of
magnitude ω/γ. Suppose now that ω is adjusted so that
ω = γB0. Then the rapid precession will vanish, i.e. its
frequency in the rotating frame will be zero, and the par-
ticle will precess slowly about the direction of the steady
field (B1/2)̂ı′ with angular velocity γB1/2, with only a
tiny flutter averaging to zero due to the counter-rotating

component. If ~I is initially parallel to B0, then in time

π/(γB1) the spin direction will precess by 90◦, putting ~I
in the x′y′ plane, perpendicular to B0. If the oscillating
field is now turned off, the particle will be left with its
magnetic moment in the x′y′ plane and, from the point
of view of an observer in the laboratory frame, it will
be rotating in the xy-plane with angular frequency γB0

about the z-direction.

3.2. Dynamics of an Ensemble of Spins

According to the Bloch theorem, this classical treat-
ment of a single magnetized spinning body is actually
valid for an ensemble of quantized magnetic moments.

Consider such a sample containing protons placed be-
tween the poles of the magnet. According to the Boltz-
mann distribution law, if the sample is in thermal equi-
librium at temperature T , then the ratio of the number of
protons n+ with z components of spin up to the number
with z components down is

n+/n− = e(−E++E−)/kT = eµpB0/kT , (3.4)

where µp is the magnetic moment of the proton. At
room temperature in a field of several kilogauss this ratio
is only slightly greater than one, which means that the
magnetization due to alignment of the proton moments
in the z-direction is very slight.

Now, if the ensemble is rotated 90◦ by application of an
rf field under the conditions described above for the cor-
rect amount of time (a “90◦ rf burst”), then the nuclear
magnetization will end up in the plane perpendicular to
B0 and precess with angular velocity γB0 about the z
direction. The precessing magnetization creates an al-
ternating magnetic flux in the solenoid which, according
to Faraday’s law, induces an rf voltage. This rf voltage
can be readily detected after the rf burst has been ter-
minated, thereby proving that the resonance condition
was achieved and that the applied frequency was equal
to or very close to the precession frequency of the pro-
tons. Knowledge of the field strength and the resonance
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frequency allows the determination of the gyromagnetic
ratio of the proton, which is a measurement of funda-
mental importance in nuclear physics.

To detect the nuclear-induced rf signal of angular fre-
quency γB0 that appears across the terminals of the
solenoid immediately after the 90◦ rf burst, it is mixed
with a steady signal of frequency ω from the fixed os-
cillator to produce a beat signal of comparatively low
frequency |γB0 − ω| which can be observed directly on
an oscilloscope. The 90◦ rotation of magnetization still
works even if ω is slightly off resonance.

However, the precession of spins in the transverse plane
does not last forever. It decays because of three distinct
effects:

1. The field of the magnet is not perfectly uniform so
that the protons in different parts of the sample
precess at slightly different frequencies and get out
of phase with one another, thereby gradually de-
creasing the net magnetization of the sample. This
effect, although physically the least interesting, is
always the dominant effect.

2. Protons in any given substance are generally lo-
cated in several different molecular environments
in each of which the precession frequency will be
perturbed in a slightly different amount by mag-
netic dipole interactions. As in 1) the result is a
gradual loss of phase coherence and a decay of the
resultant magnetization.

3. Electromagnetic interactions between the protons
and the surrounding particles cause transitions be-
tween the spin up and spin down states whose co-
herent combination is manifested as magnetization
rotating in the xy-plane. The result is a gradual
decay of these coherent combinations and a return
to the state of thermal equilibrium in which the
magnetization is in the z-direction and therefore no
longer capable of inducing a signal in the solenoid.

The oscillatory induced signal modulated by a decay-
ing exponential (Figure 1) is referred as the Free Induc-
tion Decay (FID.) An excellent reference describing these
relaxation effects is given in [5] and is available from the
Junior Lab e-library.

3.3. Spin-Lattice Relaxation Time, T1

Application of rf pulses and the consequent rotation of
the spins from the z-axis to the xy-plane is a disruption
of the thermal equilibrium of the spins. Effect number 3
described above is called thermal relaxation, that is, the
approach to thermal equilibrium after being disturbed by
the rf pulse.

How fast the spins regain equilibrium is a measure of
the coupling of the protons to their environment. The ap-
proach to equilibrium is exponential and is characterized

90◦ RF Pulse

Free Induction Decay (FID)

envelope = exp(−t/T ∗
2 )

FIG. 1: The Free Induction Decay.

by a time constant denoted by T1, called the spin-lattice
or the longitudinal relaxation time. We can write

Mz(t) = Meq
z + (Mz(0)−Meq

z )e−t/T1 ,

where Mz(t) is the z-magnetization at time t and Meq
z

is the value of z-magnetization at thermal equilibrium.
The process of thermal relaxation is governed by the ease
with which the nuclei are able to exchange energy with
their surroundings. Transfer of energy from the spins to
the lattice requires that there be a fluctuating magnetic
field with Fourier components vibrating near the Larmor
precession frequency in order to induce NMR transitions.
The field originates from magnetic dipoles which are in
thermal agitation.

3.4. Spin-Spin Relaxation Time, T2

The time constant T1 described in the previous sec-
tion measures the regaining of longitudinal magnetiza-
tion. However, there is another process that happens.
With the passage of time after the rf pulse puts the spins
in the transverse plane, the magnetic moments interact
with one another and lose their phase coherence in the
xy-plane (this is effect number 2 described above). This
loss of transverse magnetization is characterized by the
time constant T2, called the spin-spin or the transverse
relaxation time.
T ∗2 is the name given to the observed value of the decay

constant. This observed time constant consists of two
components

1/T ∗2 = 1/T2 + γ∆H0, (3.5)

where T2 is the spin-spin, or the transverse relaxation
time and ∆H0 is the inhomogeneity of the magnetic field
over the sample volume. The second term on the right is
always larger than 1/T2 and is sometimes referred to in
the literature as 1/T ′2.

The measurement of T2 is the basis for the powerful
method of pulsed NMR chemical analysis based on mea-
surement of the various perturbed precession frequencies
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due to the various locations of the protons within the
molecule. Given the spectrum of these frequencies for a
new complex organic compound, an expert can practi-
cally write out the chemical formula.

In many cases, the same physical mechanisms deter-
mine T1 and T2 so that they are equal. The cases of
interest are those where there are additional mechanisms
for spin-spin relaxation such that T2 is shorter than T1.
After a 90◦ pulse all phase coherence may be lost be-
fore any substantial z-magnetization is recovered. The
transverse magnetization, and thus also the rf voltage in-
duced in the sample coil, fall off as the phase coherence
is lost. The dominant effect of magnet inhomogeneity,
which could be fatal for such precision measurements,
can be virtually eliminated by the remarkable invention
of Hahn who discovered the phenomenon of “spin echoes”
[6, 7]. Fig. 1 shows an FID (Free Induction Decay).

4. Measurement Techniques

4.1. The Measurement of T2: Spin Echoes

To see how a spin echo is produced, consider a typical
sample which has an enormous number of protons, of
the order of 1023. They can be divided into millions of
ensembles, each one of which consists of a still enormous
number of protons in a region where the external field has
values within a very narrow range. Each ensemble will
have a certain net magnetization which contributes to
the total magnetization, but each such magnetization will
precess with a slightly different frequency and therefore
gradually get out of phase with respect to the others.

Suppose that after a sufficiently long time interval τ , a
second transverse rf burst of double duration, i.e. a 180◦

burst, is applied to the sample.
The magnetization of each ensemble will be flipped by

180◦ about the direction of the applied pulse. This puts
the magnetization back in the xy-plane where it will re-
sume its precession motion. But now the accumulated
phase differences between the various ensembles are all
precisely reversed. Those that were ahead of the average
are now behind by the same amount, and as the preces-
sion proceeds, the dephasing of the ensembles is gradu-
ally reversed. After precisely the same time interval τ all
the ensembles are back in phase, the total magnetization
reaches a maximum, and a “spin echo” signal is induced
in the solenoid.

The amplitude of the echo is usually smaller than that
of the original FID. There will be some loss in magni-
tude of the magnetization due to thermal relaxation and
the effects of random fluctuations in the local fields that
perturb the precession of the nuclear moments and it is
precisely the relaxation time of this loss that we wish to
measure. The spin-echo method enables one to eliminate
the otherwise dominant effects of the nonuniformity of
the magnetic field. If the two-pulse sequence is repeated
for several different values of τ , the height of the echo

180◦ RF Pulse

Free Induction Decay (FID)

90◦ RF Pulse Spin Echo

FIG. 2: The NMR signal observed when the applied rf
frequency is offset slightly from the Larmor frequency.
The fast oscillations corresponds to the beat between

the two frequencies.

should vary as exp(−t/T2).
A necessary assumption implied in the spin-echo tech-

nique is that a particular spin feels the same constant
magnetic field before and after the “refocusing” 180◦

pulse. If, because of Brownian motion, a spin has dif-
fused to a different region of magnetic field before the
echo, then that spin will not be refocused by the 180◦

pulse. This is often the case for non-viscous liquids and
will result in a decay of echoes which is not quite expo-
nential and somewhat faster than that observed in vis-
cous liquids. The Carr-Purcell technique, described in
[8, 9] and summarized below, elegantly addresses this dif-
ficulty. The section of this lab guide entitled “measure-
ments” will ask you to take data to measure the apparent
T2 for two samples (e.g. a viscous sample such as glycer-
ine and a non-viscous one such as H2O containing Fe3+)
to compare with later measurements taken from the same
samples by the Carr-Purcell technique.

4.2. The Measurement of T1

We describe three methods of measuring T1.

4.2.1. 90◦ − 90◦

As mentioned above, the spin-lattice relaxation time
(T1) can be measured by examining the time dependence
of the z-magnetization after equilibrium is disturbed.
This can be done by saturating the spins with a 90◦ pulse,
so that the z magnetization is zero. Immediately after
the first pulse one should be able to observe a free induc-
tion decay (as in Fig.1) whose amplitude is proportional
to the z-magnetization just before the pulse. One then
waits a measured amount of time, τ , so that some mag-
netization has been reestablished, and then applies a 90◦

pulse to the recovering system. The second 90◦ pulse will
rotate any z magnetization into the xy plane, where it
will produce a FID signal proportional to the recovered
magnitude it had just before the second pulse. If the
two-pulse sequence is repeated for different values of τ ,
the amplitude of the FID as a function of t will give the
value of T1.
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FIG. 3: An example data set using the “Three-Pulse”
technique with the oscilloscope set to infinite-persist.

4.2.2. 180◦ − 90◦

Another sequence, the 180◦ − τ − 90◦, is also used. A
180◦ pulse is applied to the equilibrium system, causing
the population of the states to be precisely inverted, and
thus leaving the xy-magnetization at zero. In this case,
there should be little or no FID immediately after the
first pulse. The system is then allowed to approach equi-
librium for a specified delay, after which a 90◦ pulse is
applied to rotate the partially recovered z-magnetization
into the xy-plane. The magnitude of the FID gives a
measure of the size of the magnetization, which can be
plotted against the delay to give the exponential time
constant. In this case, the magnetization actually re-
verses, going through zero at time T1 ln 2.

4.2.3. 180◦ − τ − 90◦ 180◦

It was mentioned earlier that it is experimentally much
easier to detect the extremely small effects of transi-
tions if they are separated in time from the multi-watt
rf bursts. Unfortunately, the usual “Inversion Recovery”
method requires observation of the FID immediately af-
ter the second rf pulse. This problem was addressed sev-
eral years ago by two Junior Lab students1, who proposed
the “Three-Pulse” sequence [10]. See Figure 3 for a sam-
ple data set using this technique.

The first pulse (180◦) inverts the population along the
z axis as in the normal Inversion-Recovery method. After
a delay of τ , the second and third pulses can be under-
stood as a normal 180◦ − τ − 90◦ sequence, which is
used to measure the fraction of spins which are in the
| + z〉 state at the moment that the pulses are applied.
The time between the second and third pulses is kept

1 Both of these students, Rahul Sarpeshkar and Isaac Chuang, are
now M.I.T. professors. Creativity in Junior Lab is one indicator
of future success in science!

small to minimize T2 effects. The amplitude of the echo
is therefore related to the amount of T1 decay (or recov-
ery) for a given value of τ . Varying τ will have the form
A(1− 2 exp(−τ/T1)).

The three experiments mentioned so far, (i.e. the spin-
echo, the 90◦ − 90◦ and the 180◦ − 90◦ sequences) have
each been performed successfully many times in this lab.
However, each has its intrinsic difficulties leading to var-
ious modifications which will be discussed.

5. Experimental Apparatus

This experiment uses a permanent magnet whose field
is ∼ 1770 Gauss (0.177 Tesla). Care should be taken to
avoid bringing any magnetizable material (such as iron
or steel) near the magnet as this may be pulled in and
damage the magnet.

The experimental apparatus, shown in Figure 4 con-
sists of a gated rf pulse generator with variable pulse
widths and spacings, a probe circuit that delivers rf power
to the sample and picks up the signal from the sample,
a preamp that amplifies the signal, and a phase detector
which outputs an audio signal whose frequency corre-
sponds to the difference between the Larmor frequency
and the frequency of the signal generator. Details of how
to design and build NMR probes can be found in [11].

The rf pulse generating system is made up of a 15
MHz frequency synthesizer (Agilent 33120A), a digital
pulse programmer based on a STAMP micro-controller,
a double-balanced mixer used as an rf switch (Mini-
Circuits ZAS-3), a variable attenuator, and an rf power
amplifier capable of 2 watts output.

The frequency synthesizer feeds a +10dBm rf sine
wave to the power splitter. The power splitter keeps all
impedances appropriately matched while feeding one half
of the rf power to a double-balanced mixer (DBM) used
as a gate for the rf. The other half is used as a refer-
ence signal in the phase detector. The gate is opened
and closed by TTL pulses provided by the digital pulse
programmer. After the switching stage, the rf pulses
pass into a constant-gain (+33 dBm) rf power amplifier.
The power amplifier feeds the amplified pulsed rf into the
probe circuit.

The signal out of the sample, as well as a considerable
amount of leakage during pulses, comes from the probe
circuit, and is amplified by a sensitive preamp (Tron-
Tech W110F). The signal then goes into a phase de-
tector (Mini-Circuits ZRPD-1), where it is mixed with
the reference signal coming out of the other port of the
power splitter. Since the NMR signal is, in general, not
precisely at the frequency of the transmitter, when the
two signals are mixed, a signal is produced at the differ-
ence frequency of the resonance signal and the applied
rf. Since we are looking at NMR signals in the vicinity of
1-8 MHz, mixing this down to a lower frequency makes
it easier to see the structure of the signal.
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FIG. 4: The Experimental Setup. The magnet and the probe circuit are not shown

5.1. The probe circuit

PreamplifierProbehead
Cm

Ct

FIG. 5: Schematic of the probehead circuit.

The probe circuit is a tuned LC circuit, impedance
matched to 50 ohms at the resonant frequency for effi-
cient power transmission to the sample. The inductor L
in the circuit is the sample coil, a ten turn coil of #18
copper wire wound to accommodate a standard 10mm
NMR sample tube. The coil is connected to ground at
each end through tunable capacitors Cm and Ct, to allow
frequency and impedance matching. Power in and signal
out pass through the same point on the resonant circuit,
so that both the power amplifier and the signal preamp
have a properly matched load. Between the power am-
plifier and the sample is a pair of crossed diodes, in se-
ries with the probe circuit from the point of view of the
power amplifier. By becoming non-conducting at low ap-
plied voltages, these serve to isolate the probe circuit and
preamp from the power amplifier between pulses, reduc-
ing the problems associated with power amplifier noise.
The crossed diodes however, will pass the high rf voltages
that arrive when the transmitter is on. The signal out
of the probe circuit passes through a quarter-wavelength
line to reach another pair of grounded crossed diodes at
the input of the preamp. The diodes short the preamp
end of the cable when the transmitter is on, causing that
end of the cable to act like a short circuit. This helps to

protect the delicate preamp from the high rf power put
out by the power amplifier. Any quarter-wave transmis-
sion line transforms impedance according to the following
relation:

Zin = Z2
0/Zout (5.1)

where Z0 is the characteristic impedance of the line.
Therefore during the rf pulse, the preamp circuit with

the quarter-wave line looks like an open circuit to the
probe and does not load it down. Between pulses, the
voltage across the diodes is too small to turn them on,
and they act like an open circuit, allowing the small NMR
signal to pass undiminished to the preamp.

6. Experimental Procedure

Although it is the policy in Junior Lab to discour-
age the use of pre-wired experiments, there are two
reasons why the present set-up should not be (lightly)
changed. Several of the components, particularly the
double-balanced mixers (DBM) and the low-level TRON-
TECH pre-amplifier, are easily damaged if the rf power
level they are exposed to exceeds their specified limit.
Furthermore, the lengths of some of the cables have been
specifically selected to fix the relative phase relationship
of different signals.

Most of the controls that you will manipulate are on
the digital pulse programmer, the oscilloscope or the
function generator. The keypad of the Digital Pulse Pro-
grammer is shown in Figure 6. Press any of the four
buttons on the right to select a parameter (First Pulse
Width (PW1), Second Pulse Width (PW2), Tau (τ), or
Repeat Time). Then use the arrow buttons to set the cor-
responding time for that parameter. The default times
are: PW1 = 24µs, PW2 = 48µs, τ = 2ms, and Repeat
Time = 100ms. The top two buttons on the left de-
termine whether a two-pulse sequence occurs only once
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FIG. 6: The Pulse Programmer Interface.

(the Single Pair of Pulses buttom), or repeats continu-
ously (the Repeated Pairs of Pulses button) with a pause
between sequences of a length set by the Repeat Time pa-
rameter. The third button, labeled “Carr-Purcell,” will
create a series of pulses corresponding to the Carr-Purcell
technique described in Section 6.3. Finally, the fourth
button, “Three Pulse,” outputs 180◦ − τ − 90◦ 180◦

pulses for a measurement.

Set the delay, τ , to the minimum position and observe
the amplified rf pulses from the port marked “transmit-
ter” on channel 2 of the oscilloscope. The pulses should
be approximately 20-30 volts peak-to-peak. Choose the
slowest possible sweep speed; this will enable both pulses
to be viewed simultaneously. A good starting pair of
pulse-widths might be 24 µs and 48 µs, corresponding to
approximately 90◦ and 180◦. Now switch to channel 1,
which displays the output of the phase detector (through
the low-pass filter). Incidentally, there is another low-
pass filter which is part of the scope itself. On the Tek-
tronix analog scope there is a button marked “BW limit
20 MHz”, which limits the allowed bandwidth. This but-
ton should be pressed in (active). On the HP digital
scope the BW limit is set by one of the soft keys. On an
Agilent scope, this is set in the channel 1 or channel 2
menu. Set the y-sensitivity to about 10 mV/div at first.
Channel 1 will display the NMR signal. Place the glycer-
ine vial in the probe and place the probe in the magnet.
Now the fun begins!

Refer to Figure 2, which is a highly stylized version of
the signals you might obtain. The form of the voltage
displayed during the two bursts is unimportant. You
will be focusing your attention on the FID signals that
appear after each burst, and on the echo. For five or
ten microseconds after the rf pulse the amplifier is still
in the recovery phase, so this part of the signal should be
ignored.

6.1. Free Induction Decay (FID)

As mentioned above, the oscillations following the first
pulse represent a beat between the applied rf frequency
and the Larmor frequency. Since the latter is propor-
tional to B0, you should see high-frequency oscillations
as you raise ω from below the resonance condition. They
will spread out in time, pass through a zero-beat condi-
tion and then begin to increase in frequency again as the
field continues to increase. These oscillations with their
exponentially decaying envelope is referred to as the Free
Induction Decay (FID).

6.2. Setting Pulse Widths

It is sometimes easiest to set the pulse widths with the
magnetic field slightly off resonance so that the FID is
well displayed. The size of the FID should be maximum
after a 90◦ or 270◦ pulse, minimum or zero after a 180◦

pulse. It is usually easiest to set the pulse-width to 180◦

by minimizing the FID. Then, if you want a 90◦ pulse,
halve the pulse-width.

You have four or more degrees of freedom, including
the widths of each of the two pulses, the delay between
the pulses, and the frequency of the applied current. Ex-
periment with all of them. Look for FID’s; vary the FID
so that you get varying amounts of oscillations (beats),
and try to explain the beats. Once you find oscillatory
FID’s, move the probe slightly between the pole pieces of
the magnet in a direction perpendicular to the magnetic
field. Explain the changes you see. Use these changes
to find the most homogeneous position in the field, then
leave the probe there for the remainder of the experiment.
Measure T ∗2 . Using various combinations of 90◦ and 180◦

rf pulses, obtain data from which you can determine T1
and T2 in several samples (see Section 7.)

6.3. The Carr-Purcell Experiment

The Carr-Purcell experiment is a technique used to
measure T2. As mentioned above, if diffusion causes nu-
clei to move from one point of an inhomogeneous mag-
netic field to another in a time less than 2τ , the echo
amplitude is reduced. It can be shown that the echo
amplitude for a pulse separation τ is

E(2τ) = E(0) exp

[
−2τ

T2
− 2

3
γ2G2Dτ3

]
, (6.1)

where G is the gradient of the inhomogeneous field and D
is the diffusion constant. Because of the τ3 dependence,
the effects of diffusion are pronounced for large values
of t and thus affect the measurement of long T2’s. Carr
and Purcell [8] introduced a pulse sequence which can
be described as follows: π/2, τ, π, 2τ, π, 2τ, π, 2τ ... (i.e.
90 deg pulse at time 0, followed by 180 deg pulses at times
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FIG. 7: The Carr-Purcell pulse and echo sequence

τ, 3τ, 5τ , etc.) Echoes will be observed at times 2τ, 4τ, 6τ ,
etc.

When you are ready to do a Carr-Purcell, set up the
pulse width and magnetic field first with a two-pulse spin
echo and then switch to the Carr-Purcell mode using the
pulse programmer. The scope readout should resemble
Figure 7.

7. MEASUREMENTS

7.1. Magnetic Moments of Hydrogen and Fluorine

With this apparatus, we can measure the magnetic mo-
ments of two nuclei: the proton 1H and the Fluorine nu-
cleus 19F . One of the strongest signals you can detect is
due to hydrogen in glycerine. Once you have obtained a
good resonance, remove the sample and replace it with
the transverse probe of the Hall Gaussmeter. From the
magnetic field strength (∼ 1770 Gauss) and the mea-
sured frequency you can calculate the magnetic moment.
Repeat the measurement for fluorine using the trifluoric
acetic acid sample or the hexafluorobenzene (you may
wish to consult the CRC or another source to get an idea
of what resonant frequency you are looking for). The
former is a strong acid and should be handled with ex-
treme care. Before looking for the fluorine resonance,
move the knob on the probe circuit in the magnet to
point to “F”. Also note that the T1 relaxation time for
our fluorine sample is long and if you use the default (100
ms) repetition rate of the pulse sequence, the observed
signal will be small! Finally, be creative with the pulse
programmer. For example, by setting pw2 = 1µs you can
effectively create a one pulse sequence.

7.2. Relaxation Constants for Water

In the case of water, the relaxation times (T1 equals T2
for most non-viscous liquids) are of the order of several
seconds. The measurement of T2 is quite difficult but the
equivalent measurement of T1 can be done as follows:

Set up a 90◦ − 180◦ echo sequence with the shortest
possible delay between pulses. As mentioned above, one
must usually wait at least 5 times T1 between successive
repeats of this pulse sequence to allow sufficient time for
equilibrium to be re-established. If less time is taken, the
echo signal is diminished. Taking advantage of this fact,
one can vary the repeat rate and plot the echo height
against the repeat time. For times less than about 3 sec,
you can read this repeat time from the small numerical
display on the scope (push the button marked “per”).
For slower rates switch to the manual (“one-shot”) mode
and use your watch to wait a specified amount of time in
between pulses. Repeat the measurement for both tap-
water and distilled water.

The first measurements of T1 in distilled water stood
for about thirty years. Since then careful measurements
have produced a number which is about 50% higher. The
difference is due to the effect of dissolved oxygen in the
water (O2 is paramagnetic). As an optional experiment,
you might try to carefully remove the dissolved oxygen
from a sample of distilled water. Bubbling pure nitrogen
through the water will work as will other methods in the
literature. A challenging question which you might dis-
cuss in your oral examination is why O2 is paramagnetic
while N2 is diamagnetic.

7.3. Effects of Paramagnetic Ions

An extremely small amount of any substance with un-
paired electron spins has a very dramatic effect of reduc-
ing T1. There is a bottle of FeCl3.6H20 in the lab. The
standard starting solution has a molarity of 0.166M cor-
responding to approximately 1020 Fe+++ ions/cc. There
are 15 serial dilutions made from the standard solution
with which measurements of both T1 and T2 should be
taken. Repeat your measurements across the dilutions
several times to ensure accuracy and precision. Plot the
relaxation times versus concentration on a log-log scale.

7.4. Effect of Viscosity

It has been shown that the major contribution to both
T1 and T2 processes comes from the fluctuating dipo-
lar fields of other nuclear (and unpaired electron ) spins
in the immediate region. Only those fluctuations which
have a sizeable Fourier component at the Larmor fre-
quency can affect T1, but spin-spin relaxation is also sen-
sitive to fluctuations near zero frequency. It is for this
reason that viscous liquids (whose fluctuations have a
sizeable low-frequency component) exhibit a T2 less than
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Viscosity of Aqueous Glycerine Solutions
in Centipoises/mPa s

Temperatur e (°C)

Glycerine
percent
weight 0 10 20 30 40 50 60 70 80 90 100

0 (1) 1.792 1.308 1.005 0.8007 0.6560 0.5494 0.4688 0.4061 0.3565 0.3165 0.2838
10 2.44 1.74 1.31 1.03 0.826 0.680 0.575 0.500 – – –
20 3.44 2.41 1.76 1.35 1.07 0.879 0.731 0.635 – – –
30 5.14 3.49 2.50 1.87 1.46 1.16 0.956 0.816 0.690 – –
40 8.25 5.37 3.72 2.72 2.07 1.62 1.30 1.09 0.918 0.763 0.668
50 14.6 9.01 6.00 4.21 3.10 2.37 1.86 1.53 1.25 1.05 0.910
60 29.9 17.4 10.8 7.19 5.08 3.76 2.85 2.29 1.84 1.52 1.28
65 45.7 25.3 15.2 9.85 6.80 4.89 3.66 2.91 2.28 1.86 1.55
67 55.5 29.9 17.7 11.3 7.73 5.50 4.09 3.23 2.50 2.03 1.68
70 76 38.8 22.5 14.1 9.40 6.61 4.86 3.78 2.90 2.34 1.93
75 132 65.2 35.5 21.2 13.6 9.25 6.61 5.01 3.80 3.00 2.43
80 255 116 60.1 33.9 20.8 13.6 9.42 6.94 5.13 4.03 3.18
85 540 223 109 58 33.5 21.2 14.2 10.0 7.28 5.52 4.24
90 1310 498 219 109 60.0 35.5 22.5 15.5 11.0 7.93 6.00
91 1590 592 259 127 68.1 39.8 25.1 17.1 11.9 8.62 6.40
92 1950 729 310 147 78.3 44.8 28.0 19.0 13.1 9.46 6.82
93 2400 860 367 172 89 51.5 31.6 21.2 14.4 10.3 7.54
94 2930 1040 437 202 105 58.4 35.4 23.6 15.8 11.2 8.19
95 3690 1270 523 237 121 67.0 39.9 26.4 17.5 12.4 9.08
96 4600 1580 624 281 142 77.8 45.4 29.7 19.6 13.6 10.1
97 5770 1950 765 340 166 88.9 51.9 33.6 21.9 15.1 10.9
98 7370 2460 939 409 196 104 59.8 38.5 24.8 17.0 12.2
99 9420 3090 1150 500 235 122 69.1 43.6 27.8 19.0 13.3

100 12070 3900 1410 612 284 142 81.3 50.6 31.9 21.3 14.8

(1)Viscosity of water taken from “Properties of Ordinary Water-Substance.” N.E. Dorsey, p. 184. New York (1940)

Temperature (º C)!

FIG. 8: The viscocity of water-glycerine mixtures.
Taken from

http://www.dow.com/glycerine/resources/table18.htm

T1. You will find a series of samples of glycerine-water
mixtures in different ratios. Each will be marked with its
viscosity2 Measure T2 by the Carr-Purcell method and T1
by the 180◦−90◦ method, the three-pulse method or the
method suggested in Subsection 7.2. With the aid of
Figure 8, compare your results with those found in the
extraordinary thesis of Bloembergen [12] started in the
year that NMR was discovered.

8. Supplemental Questions

Each of the magnetic moments in a sample is influ-
enced by the magnetic fields of other moments in its
neighborhood. These differ from location to location in
the sample, depending on the relative distance and ori-
entation of neighbor moments to one another. An ap-
proximate measure of the magnetic field variation expe-
rienced by the proton moments in the water molecule is
the range corresponding to parallel alignment of two in-
teracting protons at one extreme to opposite alignment
at the other.

1. Using µ/r3 for the field of the neighbor moment,
show that the half-range in the Larmor precession
frequencies is given by ∆ω ≈ (gµn)2/hr3.

2. The return to normal of the transverse distribution
of the protons following resonance occurs as mo-
ments with different precession frequencies become
more and more randomly orientated in the preces-
sion angle. Estimate the transverse relaxation time
T2 for the water sample by finding the time re-
quired for two moments, differing by the average
∆ω calculated in part a., to move from in-phase to
π-out-of-phase positions.

As you’ve probably guessed, this lab is merely a step-
ping off point for an incredibly varied set of potential
investigations. Some good general references for this lab
(beyond the ones already cited in the text) are [13–19].

[1] F. Bloch, Phys. Rev. 70, 460 (1946).
[2] N. Bloembergen, E. Purcell, and R. Pound, Phys. Rev.

73, 679 (1948).
[3] Nobel Lecture for Felix Bloch and Edward Mills Purcell

(1952).
[4] A. Abragam, Principles of Nuclear Magnetism (Oxford

University Press, 1961), ISBN QC762.A158, physics De-
partment Reading Room.

[5] Derome, Mod. NMR Technique. For Chem. Research
(1987).

[6] E. Hahn, Phys.Rev. 80, 580 (1950).
[7] E. Hahn, Phys Today Nov. 1953, 4 (1953).
[8] H. Carr and E. Purcell, Phys. Rev 94, 630 (1954).
[9] S. Meiboom and D. Gill, Rev. Sci. Inst. 29, 668 (1958), a

short paper with a major modification of the Carr-Purcell
sequence. Without such a modification, it is not possible
to generate a long train of echoes. This is an early applica-
tion of a complex multiple-pulse sequence with phase shifts
which have become routine.

[10] I. Chuang, Junior Lab Paper (1990).
[11] R. Ernst and W. Anderson, Rev. Sci. Instrum. 37, 93

(1966).
[12] N. Bloembergen, Nuclear Magnetic Relaxation (W.A.

Benjamin, 1961), ISBN QC173.B652, physics Department
Reading Room.

[13] G. Pake, American Journal of Physics 18, 438 (1950).
[14] T. Farrar and E. Becker, Pulse and FT NMR (Acad.

Press, 1971), ISBN QC454.F244, physics Department
Reading Room.

[15] Feynman, Leighton, and Sands, Lectures on Physics,
vol. Volume II, Chapter 35 (Addison-Wesley, 1965), ISBN
QC23.F435, interesting discussions of angular momentum,
the Stern-Gerlach Experiment and NMR, Physics Depart-
ment Reading Room.

[16] E. Fukushima and S. Roeder, Experimental Pulse NMR
(Addison-Wesley, 1981), ISBN QC762.F85, an excellent
practical reference, Science Library Stacks.

[17] R. Freeman, A Handbook of Nuclear Magnetic Resonance
(Farragut Press, 1997), 2nd ed., ISBN QD96.N8.F74, spin-
Lattice Relaxation, Science Library Stacks.

[18] G. Pake, Annual Review of Nuclear Science 19, 33
(1954).

[19] G. Pake, Sci. Amer. Aug. (1958), an excellent introduc-
tion, Science Library Journal Collection.
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APPENDIX A: QUANTUM MECHANICAL
DESCRIPTION OF NMR

Recall that for all spin-1/2 particles (protons, neu-
trons, electrons, quarks, leptons), there are just two
eigenstates, spin up: |S, Sz〉 = | 12 , 12 〉 → |0〉 and spin

down: |S, Sz〉 = | 12 , −12 〉 → |1〉. Using these as basis vec-
tors, the general state of a spin-1/2 particle can be ex-
pressed as a two-element column matrix called a spinor:

|ψ〉 = u|0〉+ d|1〉 =

[
u

d

]
. (A1)

Normalization imposes the constraint |u|2 + |d|2 = 1.
The system is governed by the Schrödinger equation:

i~
d

dt
|ψ〉 = H|ψ〉 (A2)

which has the solution |ψ(t)〉 = U |ψ(0)〉, where U =
e−iHt/~ is unitary. In pulsed NMR, the Hamiltonian

H = −~µ · ~B = −µ[σxBx + σyBy + σzBz] (A3)

is the potential energy of a magnetic moment placed in
an external magnetic field. The σ’s are the Pauli spin
matrices,

σx ≡
[

0 1

1 0

]
, σy ≡

[
0 −i
i 0

]
, σz ≡

[
1 0

0 −1

]
.(A4)

Inserting (A4),(A1) and (A3) into (A2), we get:

u̇ = µ [iBx +By] d+ iµBzu (A5)

ḋ = µ [iBx −By]u− iµBzd (A6)

If Bx = By = 0 and the equations reduce to

u̇ = iµBzu, ḋ = −iµBzd. (A7)

Integrating with respect to time yields

u = u0e
iµBzt = u0e

iω0t, d = d0e
−iµBzt = d0e

−iω0t

(A8)
where ω0 = µBz/~ is the Larmor Precession Fre-
quency. If an atom undergoes a spin-flip transition from
the ‘spin-up’ state to the ‘spin-down’ state, the emitted
photon has energy E = 2ω0~.

Now let’s add a small external magnetic field Bx but
still keeping By = 0 and such that Bx � Bz. Equations
A5 and A6 become:

u̇ = iµBxd/~− iµBzu/~ (A9)

ḋ = iµBxu/~ + iµBzd/~ (A10)

For a time varying magnetic field of the type produced
by an ‘RF-Burst’ as in pulsed NMR, Bx = Bx0 cosωt =
Bx0

(
eiωt + e−iωt

)
/2. Define ωx = µBx/~. We see that

u̇ = −iω0u+ iωx
(
eiωt + e−iωt

)
d/2 (A11)

ḋ = iω0d+ iωx
(
eiωt + e−iωt

)
u/2 (A12)

Using ωx � ω0 since Bx � B0, we can try for a solu-
tion of the form

u = Cu(t)e−iω0t, d = Cd(t)e
iω0t (A13)

Inserting them into the differential equations for u and
d, we get

Ċu =
iωx
2
Cd

[
ei(ω−2ω0)t + e−i(ω−2ω0)t

]
(A14)

Ċd =
iωx
2
Cu

[
ei(ω−2ω0)t + e−i(ω+2ω0)t

]
(A15)

Now we use the approximation ω � ω0 to show that
the leading terms are very small. If we run at resonance
(ω = 2ω0):

Ċu =
iωx
2
Cd, Ċd =

iωx
2
Cu (A16)

Taking the derivatives of these equations, we see that
these coefficients act like harmonic oscillators of fre-
quency ωx/2. These have the general solution

Cu = a cos (ωxt/2) + b sin (ωxt/2) (A17)

Cd = ia sin (ωxt/2)− ib cos (ωxt/2) (A18)

Putting these in A13, we get the solution for u and d.
These are called Rabi Oscillations, valid for ωx � ω0.

APPENDIX B: BLOCH SPHERE
REPRESENTATION

A single qubit in the state a|0〉+ b|1〉 can be visualized
as a point (θ, φ) on the unit sphere, where a = cos(θ/2),
b = eiφ sin(θ/2), and a can be taken to be real because
the overall phase of the state is unobservable. This is
called the Bloch sphere representation, and the vector
(cosφ sin θ, sinφ sin θ, cos θ) is called the Bloch vector.

The Pauli matrices give rise to three useful classes of
unitary matrices when they are exponentiated, the rota-
tion operators about the x̂, ŷ, and ẑ axes, defined by the
equations:

Rx(θ) ≡ e−iθX/2 = cos
θ

2
I − i sin

θ

2
X

=

[
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

]
(B1)

Ry(θ) ≡ e−iθY/2 = cos
θ

2
I − i sin

θ

2
Y

=

[
cos θ2 − sin θ

2

sin θ
2 cos θ2

]
(B2)

Rz(θ) ≡ e−iθZ/2 = cos
θ

2
I − i sin

θ

2
Z

=

[
e−iθ/2 0

0 eiθ/2

]
. (B3)
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One reason why the Rn̂(θ) operators are referred to
as rotation operators is the following fact. Suppose a
single qubit has a state represented by the Bloch vector
~λ. Then the effect of the rotation Rn̂(θ) on the state is
to rotate it by an angle θ about the n̂ axis of the Bloch
sphere.

An arbitrary unitary operator on a single qubit can
be written in many ways as a combination of rotations,
together with global phase shifts on the qubit. A useful
theorem to remember is the following: Suppose U is a
unitary operation on a single qubit. Then there exist
real numbers α, β, γ and δ such that

U = eiαRx(β)Ry(γ)Rx(δ) . (B4)

APPENDIX C: FUNDAMENTAL EQUATIONS
OF MAGNETIC RESONANCE

The magnetic interaction of a classical electromag-
netic field with a two-state spin is described by the

Hamiltonian H = −~µ · ~B, where ~µ is the spin, and
B = B0ẑ + B1(x̂ cosωt + ŷ sinωt) is a typical applied
magnetic field. B0 is static and very large, and B1 is
usually time varying and several orders of magnitude
smaller than B0 in strength, so that perturbation theory
is traditionally employed to study this system. However,
the Schrödinger equation for this system can be solved
straightforwardly without perturbation theory, in terms
of which the Hamiltonian can be written as

H =
ω0

2
Z + g(X cosωt+ Y sinωt) , (C1)

where g is related to the strength of the B1 field, and
ω0 to B0, and X,Y, Z are the Pauli matrices as usual.
Define |φ(t)〉 = eiωtZ/2|χ(t)〉, such that the Schrödinger
equation

i∂t|χ(t)〉 = H|χ(t)〉 (C2)

can be re-expressed as

i∂t|φ(t)〉 =
[
eiωZt/2He−iωZt/2 − ω

2
Z
]
|φ(t)〉 . (C3)

Since

eiωZt/2Xe−iωZt/2 = (X cosωt− Y sinωt) , (C4)

(C3) simplifies to become

i∂t|φ(t)〉 =

[
ω0 − ω

2
Z + gX

]
|φ(t)〉 , (C5)

where the terms on the right multiplying the state can be
identified as the effective ‘rotating frame’ Hamiltonian.
The solution to this equation is

|φ(t)〉 = e
i

[
ω0−ω

2 Z+gX

]
t|φ(0)〉 . (C6)

The concept of resonance arises from the behavior of
this solution, which can be understood to be a single
qubit rotation about the axis

n̂ =
ẑ + 2g

ω0−ω x̂√
1 +

(
2g

ω0−ω

)2 (C7)

by an angle

|~n| = t

√(
ω0 − ω

2

)2

+ g2 . (C8)

When ω is far from ω0, the spin is negligibly affected
by the B1 field; the axis of its rotation is nearly parallel
with ẑ, and its time evolution is nearly exactly that of the
free B0 Hamiltonian. On the other hand, when ω0 ≈ ω,
the B0 contribution becomes negligible, and a small B1

field can cause large changes in the state, corresponding
to rotations about the x̂ axis. The enormous effect a
small perturbation can have on the spin system, when
tuned to the appropriate frequency, is responsible for the
‘resonance’ in nuclear magnetic resonance.

In general, when ω = ω0, the single spin rotating frame
Hamiltonian can be written as

H = g1(t)X + g2(t)Y , (C9)

where g1 and g2 are functions of the applied transverse
RF fields.

APPENDIX D: MODELING THE NMR PROBE

The material in this appendix was provided by Profes-
sor Isaac Chuang. A tuned circuit is typically used to
efficiently irradiate a sample with electromagnetic fields
in the radiofrequency of microwave regime. This circuit
allows power to be transferred from a source with min-
imal reflection, while at the same time creating a large
electric of magnetic field around the sample, which is
typically placed within a coil that is part of it.

FIG. 9: Schematatic diagram of NMR probe circuit.
The connector on the right goes off to the source and

any detection circuitry.
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1. Circuit and Input Impedance

A typical probe circuit, as shown in Figure 7, consists
of an inductor L, its parasitic coil resistance R, a tuning
capacitor CT , and an impedance matching capacitor Cm.
We can analyze the behavior of this circuit using the
method of complex impedances, in which the capacitors
have impedance ZC = 1/iωC, inductors ZL = iωL, and
resistors ZR = R, with ω = 2πf being the frequency in
rad/sec. The input impedance is thus

Z = ZCm +

[
1

ZCT
+

1

R+ ZL

]
−1

=
1

iωCm
+

[
iωCT +

1

R+ iωL

]
−1

=
1 + iωR(CT + Cm)− ω2L(CT + Cm)

iωCm(1 + iRωCT − ω2LCT )
. (D1)

2. Tune and Match Conditions

The resonant frequency of this circuit is set by

ω2
∗ =

1

L(CT + Cm)
, (D2)

and at this frequency, the input impedance is

Z0 =
R(CT + Cm)

Cm(1 + iRω∗CT − ω2∗LCT )
. (D3)

We would like this impedance to be 50 ohms, because
that is the typical impedance expected by RF or mi-
crowave sources and the coaxial cable which carries in
the signal. Setting Z0 = 50 we obtain:

50

R
=

(CT + Cm)2

Cm [Cm + iRω∗CT (CT + Cm)]
. (D4)

To good approximation, the iRω∗CT (CT + Cm) term in
the denominator may be neglected, giving

50

R
=

(
1 +

CT
Cm

)2

. (D5)

When these conditions are satisfied, almost all the
source power goes into the tuned resonator at the res-
onant frequency, thus creating the strongest possible os-
cillating magnetic field inside the coil L.
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The Speed and Mean-Life of Cosmic-Ray Muons

MIT Department of Physics
(Dated: September 5, 2011)

The purpose of this experiment is to demonstrate 1) the existence of a speed limit on the motion
of particles by measuring the speed of cosmic-ray muons, and 2) the relativistic dilation of time by
comparing the mean life of muons at rest and in high speed motion.

1. PREPARATORY QUESTIONS

1. What are muons, how are they produced in the at-
mosphere, and why are they particularly penetrat-
ing particles (as opposed to electrons or protons)?

2. Starting from the Lorentz transformation equa-
tions, derive an expression for the mean life mea-
sured in the laboratory of unstable particles trav-
eling with kinetic energy K. Their rest mass is m0,
and their mean life at rest is τ0 . Assuming that
the most likely momentum for the muon is approx-
imately 1 GeV/c (see Appendix B), calculate β, γ
and the flight time for a trip of 3 meters (approxi-
mate flight path in this apparatus.)

3. A singly charged particle traveling in matter at
nearly the velocity of light loses energy by Coulomb
interactions with the atoms of matter at a rate of
approximately 2MeV/(gm/cm2)−1 (the denomina-
tor is an “area density” and is equal to the volume
density times the thickness). How much energy is
lost by a relativistic particle (v ≈ c) particle in ver-
tically traversing the entire atmosphere?

4. Describe how a scintillation counter works, start-
ing with the entrance of an energetic charged parti-
cle into a scintillator, and ending with an electrical
pulse at the output of the photomultiplier.

5. How many “accidentals” (i.e. pulses from unrelated
particles) will you observe from two scintillation
counters with rates n1 = 104s−1 and n2 = 2·104s−1

if you measure for 1 hour? Assume the time win-
dow for determining coincidence to be 100ns. How
will these accidentals be distributed in your spec-
trum of “counts vs. time”?

6. The weight of the cylinder of plastic scintillator
used in the measurement of the muon mean life
is 20.3 kg. Predict the rate of muon decay events
in the cylinder. (See Appendix A).

2. WHAT YOU WILL MEASURE

1. According to classical mechanics the speed of a par-
ticle is proportional to the square root of its kinetic
energy. Since there is no limit, in principle, on the
kinetic energy of a body, there is no classical speed
limit. According to the theory of relativity there

is a speed limit. In the first of these experiments
you will measure the velocity distribution of high
energy muons that are generated high in the atmo-
sphere through the interactions of primary cosmic
ray nuclei and pass through the lab from ceiling to
floor.

2. In the second experiment you will measure the de-
cay curve of muons that have come to rest in a
scintillator and determine their mean life. Given
your measured values of the speed limit and the
mean life, and given the fact that most of the muons
are produced at altitudes above 10 km, you will
confront the fact that the muons that traverse the
scintillator paddles survived much longer than the
mean life of muons at rest in the laboratory. How
is that possible?

2.1. Suggested Progress Check for end of 2nd
Session

Using your measured MCA distributions of muon time
of flights for two different paddle positions, calculate the
speed of the cosmic-ray muons to zeroth order.

3. INTRODUCTION

Webster’s Ninth New Collegiate dictionary defines
kinematics as “a branch of dynamics that deals with as-
pects of motion apart from considerations of mass and
force.” Relativistic kinematics deals with motion at
speeds approaching that of light. These experiments are
concerned with phenomena of high speed kinematics -
the distribution in speed of very high energy particles,
and the comparative rates of clocks at rest and in high
speed motion.

Common sense, based on experience with compara-
tively slow motions, is a poor guide to an understand-
ing of high speed phenomena. For example, in classical
kinematics velocities add linearly in accordance with the
Galilean transformation, which implies no limit, in prin-
ciple, to the relative velocities of two bodies. On the
other hand, Maxwell’s equations have solutions in the
form of waves that travel in vacuum with the universal
velocity c, without regard to the motion of the source or
observer of the waves. Thus, until Einstein straightened
things out in 1905 in his special theory of relativity, there
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was a fundamental contradiction lurking in the kinemat-
ical foundations of physics, as embodied in Newtonian
mechanics and the Maxwell theory of electromagnetism
[? ].

This contradiction was laid bare in interferometry ex-
periments begun by Michelson in 1881, which demon-
strated the absence of any detectable effect of the motion
of an observer on the velocity of light. Apparently with-
out knowing about the Michelson experiment, Einstein
took this crucial fact for granted when he began to think
about the problem in 1895 at the age of sixteen (Pais,
1982). Ten years later he discovered the way to fix the
contradiction; keep Maxwell’s equations intact and mod-
ify Galilean kinematics and Newtonian dynamics. The
fundamental problem of kinematics is to find the rela-
tions between measurements of space, time and motion
in different reference frames moving with respect to one
another. An excellent reference on special relativity can
be found in French (1968)[? ].

Consider, for example, two events (think of two flash
bombs, or the creation and decay of a muon) that occur
on the common x-axes of two mutually aligned inertial
coordinate systems A and B in uniform motion relative to
one another in the direction of their x-axes. Each event is
characterized by its four coordinates of position and time,
which will, in general, be different in the two frames. Let
xa, ya, za, ta represent the differences between the coor-
dinates of the two events in the A frame, i.e., the com-
ponents of the 4-displacement. Similarly, xb, yb, zb, tb are
the components of the 4-displacement in the B frame.
According to the Galilean transformation of classical me-
chanics, the components of the 4-displacement in A and
B are related by the simple equations

xb = xa − vta, yb = ya, zb = za, tb = ta (3.1)

and their inverse

xa = xb + vtb, ya = yb, za = zb, ta = tb (3.2)

where v is the velocity of frame B relative to frame A. If
the two events are, in fact, two flash bombs detonated at
a particular location in a third coordinate system (think
of a rocket ship carrying the bombs) traveling in the x-
direction with velocity u relative to B, then

xb
tb

= u and
xa
ta

= u+ v (3.3)

i.e., the velocity of the rocket ship relative to A is the
sum of its velocity relative to B and the velocity of B
relative to A. This simple result accords with common
sense based on experience with velocities that are small
compared to c , the speed of light. Clearly, it implies no
limit on the velocity of one body relative to another and
assigns no special significance to any particular velocity.
For example, if u = 0.9c and v = 0.9c, then xa/ta =
1.8c. According to the special theory of relativity such a
“superluminal” velocity is impossible because kinematics

is actually governed by the transformation equations

xb = γ(xa − βcta),

yb = ya,

zb = za,

ctb = γ(cta − βxa),

(3.4)

and their inverse,

xa = γ(xb + βctb),

ya = yb,

za = zb,

cta = γ(ctb + βxb),

(3.5)

where β = v/c and γ = 1/
√

(1− β2). We obtain the
addition equation for velocities, as before, by dividing
the equations for xa and ta. Thus

xa
ta

=
u+ v

1 + uv
c2

(3.6)

Now, if u = 0.9c and v = 0.9c, then xa/ta = 0.9945c.
No compounding of velocities less than c can yield a rel-
ative velocity of two bodies that exceeds c. Moreover,
any entity that propagates with velocity c (i.e., massless
particles such as photons, gravitons, and probably neu-
trinos) relative to one inertial reference frame will propa-
gate with velocity c relative to every other inertial frame
regardless of the motions of the frames relative to one
another. Thus the velocity of light in vacuum is raised
to the status of a universal constant - the absolute speed
limit of the universe. The first experiment will demon-
strate the consequences of this fact of relativity for the
distribution in velocity of high-energy cosmic-ray muons.

Consider what these equations imply about different
observations of the time interval between two events such
as that between two flash bombs, or between the birth
and death of a particle or person. Suppose a rocket ship
carrying two flash bombs is at rest in frame B so that the
bombs go off at the same position in B (xb = 0) with a
separation in time of tb. Then ta = γtb; i.e., as measured
in frame A, the time interval between the two events is
longer by the Lorentz factor γ. This is the relativistic
dilation of time.

3.1. Cosmic Rays

Much of the material in this section is taken from the
classic works by Bruno Rossi[? ? ? ]. Interstellar
space is populated with extremely rarefied neutral and
ionized gas (≈ 10−3 to 103 atoms cm−3), dust (≈ 1-10%
of gas), photons, neutrinos, and high-energy charged par-
ticles consisting of electrons and bare nuclei with energies
per particle ranging up to 1021 eV. The latter, called cos-
mic rays, constitute a relativistic gas that pervades the
galaxy and significantly affects its chemical and physi-
cal evolution. The elemental composition of cosmic-ray
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nuclei resembles that of the sun, but with certain pecu-
liarities that are clues to their origins. Most cosmic rays
are generated in our galaxy, primarily in supernova ex-
plosions, and are confined to the galaxy by a pervasive
galactic magnetic field of several microgauss. It is an
interesting and significant fact that the average energy
densities of cosmic rays, the interstellar magnetic field,
and turbulent motion of the interstellar gas are all of the
order of 1 eV cm−3.

When a primary cosmic ray (90% of which are protons,
9% helium nuclei, 1% other) impinges on the Earth’s at-
mosphere it interacts with an air nucleus, generally above
an altitude of 15 km. Such an interaction initiates a cas-
cade of high-energy nuclear and electromagnetic interac-
tions that produce an “air shower” of energetic particles
spreading outward in a cylindrically symmetric pattern
around a dense core. (See Figure 1.) As the shower prop-
agates downward through the atmosphere the energy of
the incident and secondary hadrons (nucleons, antinucle-
ons, pions, kaons, etc.) is gradually transferred to leptons
(weakly interacting muons, electrons and neutrinos) and
gamma rays (high-energy photons) so that at sea level
the latter are the principal components of “secondary”
cosmic rays. Typical events in such a cascade are repre-
sented by the reactions shown in Figure 1. High altitude
observations show that most of the muons that arrive at
sea level are created above 15 km. At the speed of light
their trip takes ≈ 50 µsec.

In 1932, Bruno Rossi, using Geiger tubes and his own
invention, the triode coincidence circuit (the first practi-
cal AND circuit), discovered the presence of highly pen-
etrating and ionizing (i.e. charged) particles in cosmic
rays. They were shown in 1936 by Anderson and Neder-
meyer to have a mass intermediate between the masses
of the electron and the proton. In 1940, Rossi showed
that these particles, now called muons, decay in flight
through the atmosphere with a mean life in their rest
frame of about 2 microseconds. Three years later, us-
ing another electronic device of his invention, the time to
pulse-height converter (TAC), he measured the mean life
of muons at rest in an experiment resembling the present
one in Junior Lab, but with Geiger tubes instead of a
scintillation detector.

In an ironic twist of history, these particles were be-
lieved to be Yukawa type (pions) until 1947 when they
were found by Powell to be muons from π+ → µ+ + νµ.

Cosmic rays are a convenient and free source of en-
ergetic particles for high energy physics experiments.
They suffer the disadvantage of being a mixed bag of
uncollimated particles of various kinds with low inten-
sity and a very broad range of energies. Nevertheless,
the highest energy of a cosmic-ray primary measured so
far, ≈ 1021 eV , exceeds by many orders of magnitude
the practical limit of any existing or conceivable man-
made accelerator. Cosmic rays will therefore always be
the only source of particles for the study of interactions
at the highest observable energies. In the present exper-
iment they will be used to explore relativistic kinemat-

ics at the comparatively modest energies of a few GeV
(1 GeV= 109 eV), which are the typical energies of the
muons detected at sea level.

3.2. The Speed Distribution of Cosmic-Ray Muons

According to Newtonian mechanics the velocity of a
particle is related to its energy and mass by the equation

v =

√
2E

m
= c

√
2E

mc2
. (3.7)

For the muon the value of mc2 is 105.7 MeV. Thus, the
Newtonian prediction for the velocity of a 1 GeV muon is
approximately 4.3c. According to relativistic mechanics,
the higher the energy of a particle, the closer its speed
approaches c. Thus an observation of the distribution in
speed of high-energy cosmic-ray muons provides a dra-
matic test of the relation between energy and velocity.
The experiment consists of a measurement of the differ-
ence in the time of flight of muons between two detectors
in the form of plastic scintillator “paddles” when they are
close together and far apart. The 2nd Edition of Melissi-
nos (2003) describes this experiment in some detail [?
].

The setup is shown in Figure 2. The signal from the
top detector generates the start pulse for the time-to-
amplitude converter (TAC). The pulse from the bottom
detector, after an appropriate delay in a long cable, gen-
erates the STOP pulse. A multi-channel analyzer (MCA)
records the amplitude of the positive output pulse of the
TAC; that amplitude is proportional to the time interval
between the input start and stop pulses. The median
value of this interval for many events changes when the
bottom detector is moved from the top to the bottom
position. The change in the median value is a measure
of the median time of flight of the detected muons and,
given the distance between the top and bottom positions
of the bottom paddle, of the median velocity.

4. MEASURING THE SPEED OF COSMIC-RAY
MUONS

4.1. Procedure

Throughout the setup procedure it is essential to use
the fast (200 MHz) Tektronix oscilloscope to check the
signs, amplitudes, occurrence rates and timing relation-
ships of the pulses into and out of each component of
the electronic system. Please note that the BNC inputs
to the scope are relatively weakly connected to its in-
ternal circuit board and thus are susceptible to damage
when attaching and removing cables. Short leads have
been ‘permanently’ attached to the inputs on channels 1
and 2. Please do not remove the leads, but rather just
connect your cables to the ends of these ‘pig-tails’.
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FIG. 1: (a) Production and decay of pions and muons in a representative high energy interaction of a cosmic-ray
proton with a neutron in the nucleus of an air atom. (b) Masses and lifetimes of pions and muons.

Since you are aiming to measure time differences of the
order of the travel time of light from the ceiling to the
floor (≈ 10 nanosec), all the circuits up to the MCA must
have “rise times” substantially shorter, which means that
you must use very high sweep speeds on the oscilloscope

in order to perceive whether things are behaving prop-
erly. To avoid confusing reflections from the ends of ca-
bles, it is essential that all cables carrying fast pulses
be terminated at their outputs by their characteristic
impedance of 50 ohms, either with a terminating plug
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FIG. 2: (a) Arrangement for measuring the speed of cosmic-ray muons.

on a T-connector, or by an internal termination at the
input of a circuit.

Check the reasonableness of the arrival rates of single
pulses by measuring the size of the scintillator and esti-
mate the total rate of muons R traversing it. You can use
the following empirical formula that provides a good fit
to measurements of the intensity of penetrating particles
at sea level as a function of the zenith angle:

I(φ) = Ivcos
2(φ), (4.1)

where Iv = 0.83 × 10−2 cm−2 s−1 str−1, and φ is the
zenith angle (Rossi 1948). I(φ)dΩdAdt represents the
number of particles incident upon an element of area dA
during the time dt within the element of solid angle dΩ
from the direction perpendicular to dA. By integrating
this function over the appropriate solid angle you can es-
timate the expected counting rates of the detectors due
to the total flux of penetrating particles from all direc-
tions, and the expected rate of coincident counts due to
particles that arrive within the restricted solid angle de-
fined by the telescope (See Appendix C ). The rates of
single events and coincidences for τµ are very im-
portant calculations and you should not proceed
until you have determined these values!

The Lecroy constant fraction discriminators (CFD’s)
or the Canberra CFD’s should be used for this portion
of the experiment. Their thresholds are nominally set to
30mV by adjusting a small trim potentiometer recessed
in the front panel of the module. Optional: Its value can
be checked by using a function generator to generate sig-
nals above and below the threshold. After confirming

a 30mV level, please do not adjust the threshold
levels further, so as to extend the life of the del-
icate potentiometers. Adjust the high voltages sup-
plied to the photomultiplier tubes (PMT’s) of each of
the detectors so that the rate of pulses from the discrim-
inators is about 4R counts/s, but not more than 1kHz
as checked by the scaler (not more than 1700V for each
PMT). This will achieve a high detection efficiency for
muon pulses, including those buried in the background
of events due to local radioactivity.

Explore the operation of the TAC and the MCA with
the aid of the time calibrator (TC). The TC produces
pairs of fast negative pulses separated by multiples of a
precise interval. When these pulses are fed to the START
and STOP inputs of the TAC, the TAC produces output
pulses with amplitudes proportional to the time intervals
between the input pulses. The amplitudes are measured
by the MCA.

With the aid of the TC, set the controls of the TAC
and MCA so that the calibration of the system is ap-
proximately 20 MCA channels per nanosecond. Test the
linearity of the time-to-height conversion. Calibrate the
system so that you can relate accurately the difference
between the numbers of any two channels on the MCA
display to a change in the time interval between START
and STOP pulses at the TAC. Check this calibration by
adding a known length of 50Ω RG-58 cable just before
the STOP input at the TAC.

Now feed the negative gate pulses from CFD1 and
CFD2 to the start and stop inputs of the TAC, mak-
ing sure you have them in the right order so that the
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stop pulse arrives at the stop input after the start pulse
arrives at the start input, taking account of both the time
of flight and the pulse transmission times in the cables.
Connect the output of the TAC to the input of the MCA
operating in the PHA mode. Adjust the delays and set
the controls of the TAC and MCA so that the timing
events generated by the muons are recorded around the
middle channel of the MCA’s input range.

Acquire distributions of the time intervals between the
START and STOP pulses for a variety of paddle po-
sitions. Integration times should range from about 10
minutes (bottom paddle in its highest position) to about
45 minutes (bottom paddle in its lowest position). How
much do you gain by making longer runs?

Calibrate the time base with the TC. Do not alter any
of the cabling or electronic settings between any pair of
top and bottom measurements. Even a small change in
a high voltage or the triggering level of a discriminator
can change the timing by enough to introduce a large
systematic error in a velocity determination.

4.2. ANALYSIS

4.3. Analysis: Speed of Cosmic-Ray Muons

Keep in mind the fact that the measured quantities
are not actual times of flight of muons between the up
and down positions of the middle detector. Rather, they
are differences in arrival times of pulses from the top
and middle detectors generated by flashes of scintillation
light that have originated in various places within each
scintillator paddle and have diffused at the speed of light
in plastic to the photomultiplier window. Each event
yields a quantity ti which can be expressed as

ti = t0 +
di
vi

+ ∆ti, (4.2)

where t0 is a constant of the apparatus, di is the slant
distance traveled by the ith muon between the top and
middle detectors, vi is the velocity of the muon, and ∆ti
is the error in this particular measurement due to the dif-
ference in the diffusion times of the scintillation light to
the two photomultipliers and other instrumental effects.
(In this measurement it is reasonable to assume that the
systematic error due to the timing calibration is negligi-
ble. Therefore we can deal directly with the ti’s as the
measured quantities rather than with the channel num-
bers of the events registered on the MCA.) Suppose we
call Tu and Td the mean values of the ti’s in the up and
down positions respectively. The simplest assumption is
that

∆T = Td − Tu =
D

v
, (4.3)

where D is the difference in the mean slant distance
traveled by the muons from the top to the middle paddle

in the down and up positions, and v is the mean velocity
of cosmic ray muons at sea level. Implicit in this is the
assumption that (∆ti)av is constant in both the up and
down positions. Then v can be evaluated as

v =
D

(Td − Tu)
, (4.4)

and the random error can be derived from the error in the
means (i.e. in Td and Tu) which can be figured according
to the usual methods of error propagation. (The error of
a mean is the standard deviation divided by the square
root of the number of events.) Good statistics are needed
because of the width of the timing curve. This width is
of the same order of magnitude as the muon flight time
in the apparatus for several reasons (you should produce
estimates of the sizes of each of these effects):

1. The time of flight between the two counters is given
by Eq. (4.3), ∆T = Td − Tu = D/v. The cosmic
ray muons have a momentum distribution given in
Figure 11 in Appendix B. Using the experimental
points in this figure, estimate the dispersion in ∆T
due to this effect.

2. The cosmic ray muons have a distribution of angles
given by Eq. (4.1). This causes the distribution of
distribution of flight paths D to differ in the “close”
and “far” position. Estimate the dispersion in ∆T
due to this effect. Take into account the dimensions
of the detectors.

3. The cosmic ray muons hit the scintillators ap-
proximately uniformly. However, the phototube is
placed at one end of the scintillator. There is a
dispersion in the time that a light pulse, created in
the scintillator from the passage of the muons, hits
the phototube. Estimate the dispersion in ∆T due
to this effect, assuming that the index of refraction
of the scintillator is n ≈ 1.5.

5. MEASUREMENT OF THE MEAN LIFE OF
MUONS AT REST

Muons were the first elementary particles to be found
unstable, i.e. subject to decay into other particles. At the
time of Rossi’s pioneering experiments on muon decay,
the only other “fundamental” particles known were pho-
tons, electrons and their antiparticles (positrons), pro-
tons, neutrons, and neutrinos. Since then dozens of par-
ticles and antiparticles have been discovered, and most of
them are unstable. In fact, of all the particles that have
been observed as isolated entities, the only ones that live
longer than muons are photons, electrons, protons, neu-
trons, neutrinos and their antiparticles. Even neutrons,
when free, suffer beta (e−) decay with a half life of ∼ 15
minutes, in the decay process

n→ p + e− + νe.
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Similarly, muons decay through the process

µ− → e− + νe + νµ

with a lifetime of τ−1 =
G2
Fm

5
µ

192π3 in the Fermi β-decay
theory, based on Figure 3(a). This has become better
understood in the modern electroweak theory where the
decay is mediated by heavy force carriers W.

�
(a) Fermi

Interaction

�
(b)

Emission
of a W
boson

FIG. 3: Feynman diagrams of the muon decay process,
in which the time axis is directed to the right. Figure
(a) represents Fermi’s original theory of interaction,

while figure (b) reflects a modern understanding of the
electroweak interaction. Note an arrow to the right

indicates a particle travelling forward in time, while an
arrow to the left indicates an antiparticle travelling

forward in time.

Muons can serve as clocks with which one can study the
temporal aspects of kinematics at velocities approaching
c, where the strange consequences of relativity are en-
countered. Each muon clock, after its creation, yields
one tick – its decay. The idea of this experiment is, in
effect, to compare the mean time from the creation event
to the decay event (i.e. the mean life) of muons at rest
with the mean time for muons in motion. Suppose that
a given muon at rest lasts for a time tb. Equation 3.5
predicts that its life in a reference frame (See Figure 3
(a)) with respect to which it is moving with velocity v,
is γtb, i.e. greater than its rest life by the Lorentz fac-
tor γ. This is the effect called relativistic time dilation.
(According to relativistic dynamics, γ is the ratio of the
total energy of a particle to its rest mass energy).

In this experiment you will observe the radioactive de-
cay of muons and measure their decay curve (distribu-
tion in lifetime) after they have come to rest in a large
block of plastic scintillator, and determine their mean life.
From your previous measurement of the mean velocity of
cosmic-ray muons at sea level and the known variation
with altitude of their flux, you can infer a lower limit on
the mean life of the muons in motion. A comparison of
the inferred lower limit with the measured mean life at
rest provides a vivid demonstration of relativistic time
dilation. During the period from 1940 to 1950, observa-
tions of muons stopped in cloud chambers and nuclear
emulsions demonstrated that the muon decays into an
electron and that the energy of the resulting electron,
may have any value from zero to approximately half the
rest energy of the muon, namely ≈ 50 MeV. From this it
was concluded that in addition to an electron the decay
products must include at least two other particles, both

neutral and of very small or zero rest mass (why?). The
decay schemes are shown in Figure (1).

The experimental arrangement is illustrated in Figure
5. According to the range-energy relation for muons
(see Rossi 1952, p40), a muon that comes to rest in
10 cm of plastic scintillator ([CH2]n with a density of
≈ 1.2 g cm−3) loses about 50 MeV along its path. The
average energy deposited by the muon-decay electrons
in the plastic is about 20 MeV. We want both START
and STOP pulses for the TAC to be triggered by scin-
tillation pulses large enough to be good candidates for
muon-stopping and muon-decay events, and well above
the flood of < 1 MeV events caused mostly by gamma
rays and the “after” pulses that often occur in a photo-
multiplier after a strong pulse.

The success of the measurement depends critically on
a proper choice of the discrimination levels set by the
combination of the HV and the CFD settings. If they
are too low, and the rate of accidental coincidences into
the TAC is correspondingly too high, then the relatively
rare muon decay events will be lost in a swamp of acci-
dental delayed coincidences between random pulses. If
the discrimination levels are too high, you will miss most
of the real muon decay events. To arrive at a decision,
review your prediction of the rate of decay events in the
plastic cylinder. The answer to Preparatory Problem 5
tells you (implicitly) how to estimate the rate of acciden-
tal delayed coincidence events in which a random start
pulse is followed by a random stop pulse within a time
interval equal to, say, five muon mean lives. You want
this rate of accidental events to be small compared to
the rate of muon stoppings, allowing for reasonable inef-
ficiency in the detection of the muon decay events due to
the variability of the conditions under which the muons
stop and the decay electrons are ejected.

It is important that pulses from the same event do
not trigger the TAC to both start and stop the timing
sequence. To avoid this, the pulse from a single event
to the START input must be delayed by a sufficient
length of coaxial cable to ensure that the identical pulse
at the STOP input does not interfere with the timing
sequence initiated by that same event. In this way the
first STOP pulse is ignored, whereas the corresponding
delayed START pulse begins the TAC timing sequence.
The next pulse at the STOP input (arising from a differ-
ent event) stops the TAC, provided it occurs before the
end of the TAC timing ramp. See figure 4 for an illus-
tration of the correct timing of the pulses. What effect

  

Start

Stop

Delay

Measured by
TAC

Delay

FIG. 4: Arrival times of pulses along the STOP input
(red) and the START input (green) of the TAC.
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FIG. 5: Arrangement for measuring the mean life of muons

does this necessary delay of the start pulse and the con-
sequent loss of short-lived events have on the mean life
measurement?

A potential complication in this measurement is the
fact that roughly half of the stopped muons are negative,
and therefore subject to capture in tightly bound orbits
in the atoms of the scintillator. If the atom is carbon,
then the probability density inside the atomic nucleus
for a muon in a 1s state is sufficiently high that nuclear
absorption can occur by the process (see Rossi, “High
Energy Particles”, p 186)

µ− + p→ n+ ν, (5.1)

which competes with decay in destroying the muon.
(Note the analogy with K-electron capture, which can
compete with positron emission in the radioactive decay
of certain nuclei. Here, however, it is the radioactive
decay of the muon with which the muon capture pro-
cess competes.) The apparent mean life of the negative
stopped muons is therefore shorter than that of the pos-
itive muons. Consequently, the distribution in duration
of the decay times of the combined sample of positive
and negative muons is, in principle, the sum of two ex-
ponentials. Fortunately, the nuclear absorption rate in
carbon is low, so that its effect on the combined decay
distribution is small.

5.1. Why muon decay is so very interesting

We now know that there are two oppositely charged
muons and that they decay according to the following
three body decay schemes:

µ− → e− + ν̄e + νµ (5.2a)

µ+ → e+ + νe + ν̄µ (5.2b)

Rossi’s particle was falsely believed to be the one de-
manded by Yukawa, which in 1947 was found to be the
pion at 140 MeV. However, the charged pion decays1 into
muons via

π− → µ− + ν̄µ, (5.3)

a two-body decay! We learned from this the following
three things:

1. The existence of a new kind of neutrino, νµ.
The energies of the decay electron in the pion and
muon decay schemes look very different:

Fig. 6 shows schematic spectra: on the left is a 2-
body decay, the right must be a three body decay
and from the peculiar shape, experts know that the
3rd body must have a spin=1/2. The 1988 Nobel
Prize in Phyiscs was awarded2 for work in which
a νµ beam was generated from π decays with all
muons being swept away by a B field. νµ only
created muons, never electrons!

2. Parity Violation. The muons from pion decay
are polarized anti-parallel to the flight direction
and retain their polarization when stopping. The
number of decay electrons emitted in the forward
hemisphere of the former flight direction is different
from the one into the backward hemisphere, thus
violating parity (here, mirror symmetry).

1 The decay π → e−+ν̄e is of course also possible but is suppressed
by spin helicity.

2 http://nobelprize.org/physics/laureates/1988/index.html
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FIG. 6: Typical energy spectra resulting from two (left
figure) and three (right figure) body decays.

FIG. 7: Schematic of polarized muon decay
demonstrating parity violation, i.e.

N(e)UP 6= N(e)DOWN

3. Muon decay can be calculated exactly. En-
rico Fermi explained all beta decays (a weak in-
teraction) as the decay of neutrons bound differ-
ently in their isotopic nuclei. Free neutrons decay
slowly (mean lifetime 886 seconds) into a proton,
an electron, and an electron neutrino. Since this
is governed by weak interactions, all β-decays are
characterized by the small coupling constant

GF = 1.16× 10−5(~c)3/GeV 2. (5.4)

This was then superseded by the Electroweak Uni-
fied Theory (GWS, Nobel Prize in 1979), in which
the interaction is mediated by the 81 GeV W -
meson. This is an enormous energy; according to
the uncertainty, this should occur only very sel-

dom, causing the “weak” appearance at low ener-
gies (�MW ). Now we can say

GF =

√
2

8

( gW
MW c2

)2
(~c)3. (5.5)

Comparing the dimensionless constants, gW =
1/29 � α = 1/137, indicating the weak interac-
tion is stonger than the electromagnetic interaction
at high energies. Using the numerical value of GF
from Equation 5.4 in Equation 5.5, the muon life-
time can be calculated exactly to be [? ]

τ =
192π3~7

G2
Fm

5
µc

4
. (5.6)

Therefore, since we know GF from beta decays,
measuring τ allows us to find mµ.

5.2. Procedure: Measuring the Mean Life of Muons

Examine the outputs of the high gain photomultipliers
with the oscilloscope. Adjust the high voltage supplies so
that negative pulses with amplitudes of 1 volt or larger
occur at a rate of the order expected for muon traversals
(use your own calculations to check this). Do not exceed
1850 V to keep the noise tolerable. Feed the pulses to
the coincidence circuit. Examine the output of the coin-
cidence circuit on the oscilloscope with the sweep speed
set at 1 µsec cm−1, and be patient. You should occasion-
ally see a decay pulse occurring somewhere in the range
from 0 to 4 or so µsec, and squeezed into a vertical line by
the slow sweep speed. Now feed the negative output of
the coincidence circuit directly to the STOP input and
through an appropriate length of cable (to achieve the
necessary delay as explained above) to the START input
of the TAC. A suitable range setting of the TAC is 20.0
µsec, obtained with the range control on 0.2 µsec and
the multiplier control on 100. Connect the TAC output
to the MCA. Verify that most of the events are piling up
on the left side of the display within a timing interval of
a few muon lifetimes. Let some events accumulate and
check that the median lifetime of the accumulated events
is reasonably close to the half-life of muon. Calibrate the
setup with the time calibrator.

Commence your measurement of muon decays. To
record a sufficient number of events for good statisti-
cal accuracy, you may have to run overnight or over a
weekend. Be sure to plan your run in conjunction with
the groups in the other sections to ensure that all have
an opportunity to obtain muon lifetime measurements.
When taking an overnight dataset, leave a note on the
experiment with your name, phone number, email and
what the file is to be saved as.

If you have recorded a sufficient number of events, say
several thousand, and if the background counts are a
small fraction of the muon decay events near t =0 then
the pattern on the MCA screen should look like that
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shown in Figure (8). You should refer to Preparatory
Question #5 for help in determining the rate of ‘back-
ground’ events but be careful in your selection of the
value for τ .

FIG. 8: Typical appearance on the MCA of the
distribution in time of muon decays after about 10

hours of integration.

There is a potential pitfall in the analysis. The dis-
tribution in duration of intervals between successive ran-
dom pulses is itself an exponential function of the du-
ration, with a characteristic “decay” time equal to the
reciprocal of the mean rate. If this characteristic time is
not much larger than the muon lifetime, then the muon
decay curve will be distorted and a simple analysis will
give a wrong result. If the average time between events
is much larger than the mean decay time, then you may
assume that the probability of occurrence of such events
is constant over the short intervals measured in this ex-
periment, provided the triggering level is independent of
the time since the last pulse. Under this condition, the
observed distribution is a sum of a constant plus an ex-
ponential function of the time interval between the start
and stop pulse. The constant, which is proportional to
the rate of background events, is the asymptotic value
of the observed distribution for large values of t. If this
constant is subtracted from the distribution readout of
the MCA, then the remainder should fit a simple expo-
nential function, the logarithmic derivative of which is
the reciprocal of the mean life.

5.3. Analysis: Calculating the Mean Life of Muons

You can derive a value of the muon mean life by first
determining the background rate from the data at large
times and subtracting it from the data. Then plot the
logarithms of the corrected numbers of counts in suces-
sive equal time bins versus the mean decay time in that
interval, and fit a straight line. You should also use a
non-linear fitting algorithm to fit the 3-parameter func-
tion

ni = a e(−ti/τ) + b (5.7)

to your data by adjusting a, b, and τ by the method of
least squares, i.e. by minimizing the quantity

χ2 =
∑

(ni −mi)
2/mi, (5.8)

where mi is the observed number of events in the ith time
interval. (Watch out for faulty data in the first few tenths
of a µsec due to resolution smearing after pulsing of the
photomultiplier, and the decay of negative muons that
suffer loss by nuclear absorption.) Consult Melissinos
(1966) for advice on error estimation. Finally, compare
your fit value for b to the expected number of ‘acciden-
tals’.

Evaluate:

1. How long does it take a typical high energy cosmic-
ray muon to get to sea level from its point of pro-
duction? What would its survival probability be if
its life expectancy were the same as that of a muon
at rest?

2. Given their observed intensity at sea level, what
would be the vertical intensity of muons at an alti-
tude of 10 km if all cosmic ray muons were produced
at altitudes above 10 km and time dilation were not
true? How does this value compare with the actual
value measured in balloon experiments? (See Ap-
pendix B for data on the flux versus atmospheric
depth.)

3. Calculate a typical value of the Lorentz factor γ at
production of a muon that makes it to sea level and
into the plastic scintillator.

To think about: Suppose your twin engineered for you
a solo round trip to Alpha Centauri (4 light years away)
in which you felt a 11.0 g acceleration or deceleration all
the way out and back (could you get out of your seat?).
How much older would each of you be when you returned?

5.4. Possible Theoretical Topics

1. The Special Theory of Relativity.

2. Energy loss of charged particles in matter.

3. Fate of negative muons that stop in matter.

4. Violation of parity conservation in muon decay.

Beyond the primary references already cited in the
labguide, useful secondary references include [? ? ? ? ].
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APPENDIX A: PROPERTIES OF THE FLUX OF
COSMIC-RAY MUONS

The differential flux Iv = dN(dAdtdΩ) is given in
Fig. 10 for vertical (φ=0) incidences as a function of at-
mospheric depth. Sea level is≈1000 g cm−2 areal density.
There the momentum distribution peaks at 1GeV/c (see
Fig. 11). Each momentum corresponds to a penetration
depth differentially given in Fig. 12 for light elements
(e.g. air, scintillators, etc.)

φ

δΑ

δΩ = sin φδφδθ

FIG. 9: Differential element of the flux of cosmic-ray
muons.

The distributions at other zenith angles can be rep-
resented fairly well by the empirical formula I(R,ϕ) =
I(R, 0) cos2 ϕ. The stopping material in the experiment
is a cylinder of scintillator plastic. Call its height b, its
top area A, and its density ρ. Consider an infinitesi-
mal plug of area dA in an infinitesimally thin horizontal
slice of thickness (measured in g cm−2) dR = ρdx of
the cylinder. The stopping rate of muons arriving from
zenith angles near ϕ in dϕ in the element of solid angle
dΩ in that small volume dAdx can be expressed as

ds = I(R′, 0) cos2 ϕ(cosϕdA)(ρdx/ cosϕ)dΩ (A1)

where (cosϕ dA) is the projected area of the plug in the
direction of arrival, (dx/ cosϕ) is the slant thickness of
the plug, and R′ is the residual range of muons that arrive
from the vertical direction with just sufficient energy to
penetrate through the overlying plastic to the elemental
volume under consideration. The total rate S of muon
stoppings in the cylinder can now be expressed as the
multiple integral

S = 2πρ

A∫

0

dA

b∫

0

I(R′, 0)dx

π/2∫

0

cos2ϕ sinϕdϕ (A2)

in which we have replaced dΩ by 2πsinϕdϕ under the
assumption of azimuthal symmetry of the muon inten-
sity. Looking at Figure 12, we see that the muon range

spectrum is nearly constant out to energies much greater
than necessary to penetrate the building and the plas-
tic. So we can approximate the quantity I(R′, 0) by the
constant I(R, 0). Performing the integrations and call-
ing m = Abρ the mass of the entire cylinder, one readily
finds for the total rate of muons stopping in the cylinder
the expression

S =
2π

3
mI(Rav, 0). (A3)

APPENDIX B: REFERENCE FIGURES:
OBSERVED PROPERTIES OF COSMIC-RAY

MUONS

Several plots of empirical data concerning cosmic-ray
muon behavior, for reference purposes.
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FIG. 10: The vertical intensities of the hard component (H), of the soft component (S), and of the total corpuscular
radiation as a function of atmospheric depth near the geomagnetic equator.
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FIG. 11: Differential momentum spectrum of muons at sea level. The x-axis ranges from 102 to 105
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FIG. 12: Differential range spectrum of muons at sea level. The range is measured in gm cm−2 of air. The x-axis
ranges from 10 to 10,000
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APPENDIX C: DISTRIBUTION OF DECAY
TIMES

The fundamental law of radioactive decay is that an
unstable particle of a given kind that exists at time t will
decay during the subsequent infinitesimal interval dt with
a probability rdt, where r is a constant characteristic of
the kind of the particle and independent of its age. Call
P (t) the probability that a given particle that exists at
t = 0 will survive till t. Then the probability that the
particle will survive till t + dt is given by the rule for
compounding probabilities,

P (t+ dt) = P (t)[1− rdt]. (C1)

Thus

dP = −Prdt, (C2)

from which it follows that

P (t) = e−rt. (C3)

To find the differential distribution of decay times n(t),
which is the distribution measured in the muon decay
experiment with the TAC and MCA, we multiply the
negative derivative of P by the product of the rate S at
which muons stop in the scintillator by the total time T
of the run. Thus

n(t) = (ST )(−dP/dt) = (ST )re−rt. (C4)

Identical reasoning can be applied to the problem of
finding the distribution in duration of the intervals be-
tween random events that occur at a constant average
rate s, like the background events in the muon decay ex-
periment. In this case each random event that starts a
timing operation, in effect, creates an ’unstable’ inter-
val (=particle) that terminates (=decays) at the rate s.
Thus the distribution is a function of exactly the same
form, namely

m(t) = (sT )s e−st, (C5)

where (sT ) is the expected total number of events in
the time T . Note that the number of background events
is proportional to s2. This suggests a limit on how low
the discriminator can be set in an effort to catch all of the
muon stopping events. At some point the ratio of muon
decay events to background events will begin to decrease
as s2.
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Rutherford Scattering

MIT Department of Physics
(Dated: September 5, 2011)

This is an experiment which studies scattering alpha particles on atomic nuclei. You will shoot
alpha particles, emitted by 241Am, at thin metal foils and measure the scattering cross section of
the target atoms as a function of the scattering angle, the alpha particle energy, and the nuclear
charge. You will then measure the intensity of alpha particles scattered by thin metal foils as a
function of the scattering angle for several elements of very different atomic number.

1. Preparatory Questions

1. What is the closest possible distance of approach
of a 5.5 MeV alpha particle to a gold nucleus, and
how does that distance compare to the radius of
the nucleus?

2. Define the differential scattering cross section.

3. Sketch the expected curve of counting rate as a
function of the scattering angle for the gold foil.

4. Describe in words how charged particles lose energy
in traversing matter. How does the rate of energy
loss depend on the velocity of a particle?

5. How much energy does an alpha particle emitted
by 241Am lose in traversing 1 cm of air at STP?

6. How does the solid-state detector used in this ex-
periment work? See References [1, 2].

2. Introduction

Little was known about the structure of atoms when
Geiger and Marsden began their experiments scatter-
ing alpha particles on thin metal foils in 1909 at
the Cavendish Laboratory. A decade earlier at the
Cavendish, J. J. Thomson had discovered the electron
and determined the ratio of its charge to its mass by mea-
suring the deflections of electron beams (cathode rays) by
electric and magnetic fields. In 1909, Millikan measured
the charge of the electron in the oil drop experiment.
Thus by 1909 both the charge and mass of the electron
were known with considerable accuracy. Furthermore,
Thomson’s interpretation of X-ray scattering from car-
bon and other light elements had established that the
number of electrons per atom of a given element was
equal not to its atomic weight, but to its atomic number,
determined by its position in the periodic table. Since
the mass of an electron is much less than the mass of the
lightest atom, hydrogen, it was clear that most of the
mass in any atom is associated with the positive charge.
The central problem was to figure out how the positive
and negative parts of an atom are held together, in such
a way as to produce optical emission spectra with the
regularities expressed by the Balmer formula (discovered

by Johann Balmer in 1885) for hydrogen and the combi-
nation rules and series limits for the complex spectra of
multielectron atoms.

Thinking within the limitations of Newtonian me-
chanics and Maxwell’s electromagnetic theory, Thom-
son imagined the atom as a sphere of positive charge
within which the electrons occupy certain positions of
equilibrium, like raisins in a pudding. Set in motion,
the electrons should vibrate harmonically, radiating elec-
tromagnetic energy with characteristic sharp frequencies
that would be in the optical range if the radii of the
atomic spheres were of the order of 10−8 cm. However,
the “raisin pudding” model yielded no explanation of the
numerical regularities of optical spectra, e.g. the Balmer
formula for the hydrogen spectrum and the Ritz combi-
nation principle[3] for spectra in general.

At this point, Ernest Rutherford got the idea that the
structure of atoms could be probed by observing the
scattering of alpha particles. He had recently demon-
strated the emanation of positively charged radioactive
substances from certain sources; known as alpha parti-
cles, they are also bare helium nuclei. The positively
charged emanation of radioactive substances that he had
recently demonstrated were helium ions. According to
the raisin pudding model, an alpha particle traversing a
thin gold film should experience many small angle deflec-
tions as it passes close to or through the positive spheres
of the gold atoms. Rutherford showed [4] that the frac-
tion of particles scattered in this way through an angle
θ or greater should decrease exponentially according to
the equation

Fθ ≈ exp(−θ2/θ2m), (2.1)

where θm is the mean multiple scattering angle. For a
typical foil of gold leaf, θm ∼ 1◦. Thus at θ = 30◦, one
finds Fθ on the order of exp(−30) or 10−13.

Rutherford’s formula turned out to be correct for very
small angles of scattering. Evidently there was substan-
tial truth in the idea of multiple scattering. But in ex-
periments initiated at Rutherford’s direction, Geiger and
Marsden (1909) found that 1 in 8000 alpha particles pass-
ing through a thin film of platinum was scattered through
more than 90◦! It was as though bullets fired at a bale
of cotton could occasionally ricochet backward. Such an
observation might lead one to suspect rocks in the cotton.

At this point Rutherford (1911) advanced the hypoth-
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esis that the positive charge and most of the mass of
an atom is concentrated in a “nucleus” with dimensions
of the order of 10−12 cm (10,000 times smaller than the
atom as a whole) with the electrons in some sort of con-
figuration around it. Applying the principles of classical
mechanics, he calculated the trajectories of alpha par-
ticles passing near such nuclei, and derived an expres-
sion for the differential scattering cross section which ac-
counted accurately for the scattering data, thereby vali-
dating the hypothesis of the nuclear atom.

The Rutherford scattering differential cross section per
target atom for any target atom is

dσ

dΩ
=

(
ZZ ′e2

4E

)2
1

sin4(θ/2)
(2.2)

where θ is the scattering angle, Ze is the charge of the
target nuclei, Z ′e is the charge of the alpha particles and
E is their kinetic energy. (For a derivation, see Refer-
ence [5].) Further excruciatingly tedious experiments by
Geiger and Marsden confirmed the validity of the for-
mula within the statistical errors of their measurements.
Geiger hadn’t invented the Geiger counter yet, and elec-
tronic detection methods were still 20 years in the future.
They used a low power microscope to observe and count
by eye the scintillations produced by the alpha particles
when they impinged on a screen lightly coated with zinc
sulfide dust.

References [5, 6] present the Rutherford theory and
discuss the interpretation of data from a scattering ex-
periment that is quite similar to that in the Junior Lab,
with the exception of the specific detector and circuit
arrangement. We will confine our discussion to the fea-
tures of the experimental setup and procedures that are
peculiar to our setup.

3. Apparatus

Figure 1 is a schematic drawing of the apparatus in
the vacuum chamber. The source, 241Am, emits alpha
particles of various discrete energies, the most frequent
of which are 5.486 MeV (86%), 5.443 MeV (12.7%), and
5.391 MeV (1.4%). All these decays lead to excited states
of 237Np. The half-life of 241Am is 458 years. The source,
deposited on a thin metal disk with the highest activity of
241Am per unit area commercially available (∼ 1.5 milli-
curies per square inch) and sealed with an evaporated
gold coating 1.5 microns thick, is covered by a metal
washer with a 0.64 cm diameter hole and enclosed in a
“howitzer” with a 0.64 cm diameter aperture in its snout.
Due to the gold coating, the alpha particles’ initial ener-
gies are reduced to valuea closer to 4.8 eV. Under near-
vacuum, a collimated beam of alpha particles emerges
from the snout (the range of 5.5 MeV alpha particles in
air at atmospheric pressure is only ∼ 4 cm).

If the setup is under vacuum turn the bias voltage on
the detector slowly down to zero, close the vacuum valve

ϕ
θ

241Am α particle
howitzer

solid state
detector

target

gold foil
energy reducer

FIG. 1: Schematic of the howitzer, target, and detector
in the vacuum chamber.

between the pump and the chamber, and slowly open the
vacuum release valve, leaving the pump running. Place
the black hood on a table where it can serve as a cushion
for the plastic cover. Lift the cover off the steel cylinder
and place it flat on the hood, being careful not to damage
the underside of the plastic cover. Find out how you can
adjust the relative positions of the howitzer and detector
with respect to the target, and how you can turn, raise
and lower the target with the control rod that protrudes
from the bottom of the chamber. Note how you can
simultaneously rotate the howitzer and the target about
a vertical axis through the target with the lever attached
to the outer cylinder under the chamber. This feature
enables you to maintain a fixed relative orientation of
incident beam and target while you vary the scattering
angles of the detected alpha particles.

Two warnings: Do not remove the black cover
while the detector is still on. The lights in the lab are
far stronger than what the detector is designed to absorb.
Exposure to the background light in the lab may fry the
detector. Do not release the vacuum too quickly.
A rapid change in pressure can cause the delicate foil
targets to rupture.

3.1. Calibrate the Measurement Chain

Move the howitzer support arm so that the howitzer
points directly at the detector through the empty target
hole. Pump the system down with the bias voltage off.
If necessary, a good way to apply the necessary pressure
to initially ‘seal’ the O-ring and gasket is by weighting
the plexiglass cover with 6 – 8 lead bricks available next
to the experiment. Also, there is vacuum grease avail-
able, but don’t overuse it! A pea-sized amount is more
than enough for the surface of the O-ring. Using an os-
cilloscope, you can watch the pulses from the unbiased
detector appear and gradually grow in amplitude as the
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amount of air between the source and detector dimin-
ishes. The pressure should reach 200 microns in 10 to 15
minutes. If it doesn’t, you probably have leak a around
the O-ring seal under the plastic cover or around the gas-
ket under the stainless-steel cylinder. It can be remedied
by placing a ‘perimeter’ of lead bricks around the edge of
the cover to help weight the edges and initiate the vac-
uum. When the pressure is below 200 microns leave the
bias voltage supply switch on its lowest position and turn
the continuous bias voltage control. Connect a voltmeter
to the small aluminum box that is situated between the
voltage supply and preamp for the detector. Slowly in-
crease the voltage until the meter reads +50 volts. Adjust
the gain so that the alpha-particle (bipolar) pulses have
an amplitude of about +7 volts. The bipolar amplifier
output is better for handling high count rate detection
such as the case with no foil. Observe the pulse size dis-
tribution with the MCA and readjust the gains so that
the peak of the alpha-particle pulse-size distribution lies
at a convenient position within the full range of the multi-
channel analyzer. You can assume that the amplitude of
a detector pulse is proportional to the energy lost by the
particle in the silicon detector. Thus a linear plot of
the channel number versus energy, scaled to match the
energy of the alpha-particles coming straight from the
source, should be an accurate plot for the interpretation
of the pulse sizes you will be measuring.

3.2. Adjust the Position of the Target

Accurate vertical positioning of the target holder is
essential to assure that the particle beam passes cleanly
through one or another of the holes in the aluminum
sheet that supports the foils, without touching the edge
of the hole. Either you or your partner can manipulate
the target holder from under the table while the other
judges its position.

With the target holder in the open hole position, mea-
sure the counting rate as a function of the howitzer posi-
tion angle from ∼ -10◦ to ∼ +10◦ relative to the nominal
center position. Plot the data as you proceed on a
log scale. Log graph paper is available if desired.
Determine the exact pointer readings of the center posi-
tion and at the positions of zero counting rate intercepts
on either side of the center to determine the beam center
and its total width.

3.3. Measure the Effects of Target Foils on the
Pulse-Height Spectrum of Alpha-Particles

Using the preset accumulation time feature of the
MCA accumulate a size spectrum of the pulses produced
by unscattered alpha particles with the howitzer posi-
tion angle set at the center position. To characterize the
width of the distribution, place the start and stop cur-
sors on either edge of the distribution at the positions

where the counting rate is half the maximum value, and
note the channel numbers. Measure the channel number
of the peak counting rate. Compare the results with no
foil, the two gold foils, and the titanium foil, and figure
out the most probable energy lost by the alpha particles
in traversing each of the films. Describe and explain the
changes in the shape of the size spectrum when a target
foil is in the beam.

Determine the thicknesses of the target by reference
to the range-energy data available on the web at [7]. Be
sure to use the “projected range” data and not the CSDA
range data. To interpolate this table plot the tabulated
range versus energy. Call c1 and c2 the median channels
of the pulse before and after passage through a target.
You can assume with some confidence that the median
channel number is proportional to the particle energy.
From your range energy plot, read the range of the inci-
dent alpha particles E0 and the range of particles with
energy (c2/c1)E0. The difference in range is the thick-
ness of the target in mg · cm−2. Does your data fit better
using E0 = 5.48 MeV ot using a reduced value accounting
for the 1.5 µm gold coating on the source?

3.4. Plan and Make Your Scattering Measurements

Your data from this experiment should consist of at
least the results of the following operations:

1. Determine the essential characteristics of the ex-
perimental setup.

(a) Measure the counting rate as a function of
howitzer position angle with the open hole.

(b) Measure the loss in energy of the alpha parti-
cles in traversing each of the three targets and
determine the thicknesses of the targets from
the data.

2. Measure the angular dependence of the scattering
cross section of gold. Measure the counting rate
with a gold target for the full energy alpha particle
beam as a function of howitzer position angle out
to the largest angles that counting statistics and
time limitations allow.

3. Determine the total cross section σ. Measure the
intensity of the beam that emerges from the how-
itzer. Note that the howitzer is designed so that
the entire emergent beam irradiates the target foils;
i.e., the beam is sufficiently narrow to pass through
the foils without intercepting the target holder.

4. Measure the Z-dependence of the Rutherford cross-
section. Compare your results from the gold targets
to counting rates measured using the provided tar-
gets containing other elements.
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At large scattering angles the counting rates are very
low, so the accuracy of your data will be severely lim-
ited by the (Poisson) statistical accuracy you can achieve.
Your best strategy will be to make a complete set of
measurements with short integrating times (10 – 30 min-
utes) in each configuration you plan to use, and to carry
out a preliminary analysis of the resulting data during
the first session. Then, in the light of what you have
learned about the counting rates and the problems of
analysis, you can make a run plan allotting enough time
to each configuration to obtain enough counts to insure
good statistical accuracy. Obviously, you cannot afford
to measure the counting rates at 2◦ intervals of the how-
itzer angle. You may decide, for example, to settle for
measurements of good statistical accuracy of the angu-
lar dependence of the counting rate with one target only
at howitzer angles of, say, 20◦, 30◦, 40◦ and 60◦, and
measurements of the Z and E dependence at only one
howitzer angle, say 20◦.

You will probably want to attain at least 2 – 20% (>
4 – 400 counts) statistical accuracy in each of your mea-
sured rates. If you occupy the first lab sessions getting
acquainted with the experiment, then you will have a to-
tal of about 9 hours in the next three sessions to get your
definitive scattering data plus a possible overnight run
at a very large scattering angle to observe the amazing
phenomenon of atomic bullets ricocheting nearly straight
back. Clearly you cannot afford to creep along the
curve of rate versus position angle at one-degree inter-
vals. Rather, you must take large steps in position angle
to define the general shape of the curve, and then fill in
to refine your data as time permits.

3.5. Suggested Progress Check at End of Session 2

Plot the rate of alpha particle observations for 10◦ and
30◦ vs. 1/ sin4(θ/2). Comment on the agreement.

3.6. Challenge Experiment for Session 4:
Cross-Section Energy Dependence

To measure the energy dependence of the cross sec-
tion you can reduce the incident energy by inserting into
the slot in the howitzer the titanium foil in the holder
provided. You should make your measurement of the en-
ergy dependence of the differential cross section at a po-
sition angle large enough (say 20◦) to reduce the compli-
cations caused by multiple small-angle Rutherford scat-
tering. Your analysis will be simpler if you maintain the
same geometrical relation between the howitzer and the
scattering foil. This is feasible for measurements at po-
sition angles from 0◦ to ≈ 60◦.

4. Analysis and Interpretation

Some additional references that you may find useful
include [7–10].

1. Using a log plot, plot the gold-foil counting rates
against sin−4(θ/2), where θ is the howitzer position
angle, and compare the result with the theoreti-
cal expectation based on the Rutherford formula.
Compare also with the results given in [5]. Be sure
to also complete a full error analysis.

To make an accurate comparison between the data
plot and the predictions of the Rutherford theory,
you should take into account the spread in the an-
gular response of the apparatus. The inescapable
fact of any scattering measurement is that events
with a range of scattering angles contribute to the
counting rate at any given position angle of the de-
tector. Ideally one would like that range to be very
small so that a plot of counting rate against posi-
tion angle would be, in effect, a plot of counting
rate against scattering angle. But then the count-
ing rate would be impractically small. Thus, in de-
signing a scattering experiment, one must strike a
compromise between angular resolution and count-
ing rate. To achieve acceptable counting rates in
the present experiment, it was necessary to design
it with a broad angular acceptance.

Consequently, your plot of counting rate against
position angle should be compared to a convolution
of the Rutherford cross section with the angular re-
sponse function of the apparatus. This may be ap-
proached in one of several ways of differing sophis-
tication. To see how this can be done, call g(θ, φ)
the angular response function such that g(θ, φ)dθ is
the probability that a particle scattered at an an-
gle between θ and θ+ dθ will be detected when the
howitzer is at position angle φ. Then the expected
counting rate at φ is

C(φ) = C0

∫ π

0

g(φ, θ) sin−4(θ/2)dθ, (4.1)

where C0 is a constant that includes the solid angle
subtended by the detector at the point of scatter-
ing. For a crude approximation one might represent
g by a triangular function defined by

g(φ, θ) =

{
(1− |θ−φ|θ0

), |θ − φ| < θ0

0, |θ − φ| > θ0
, (4.2)

where θ0 is the half-width of the base of a triangular
function. The value of θ0 can be estimated by anal-
ysis of Figure ??, which is a scale drawing of the
howitzer, target holder and detector. One might
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FIG. 2: Dimensioned drawing of the alpha-particle
howitzer, target foil, and detector geometry. Dimensions
which are easily verified by the user should be done so.

set 2θ0 equal to the difference between the extreme
angles of scattering that detected particles can un-
dergo when φ =0. The convolution should yield
a curve of counting rate versus position angle that
conforms more closely to the data than the function
sin−4(φ/2) of the Rutherford cross section.

A second approximation may be made simply by
using the beam profile obtained in Section 3.2.

A little thought will convince you that it is a
formidable job of geometrical analysis to construct
an exact analytical expression for g. A more prac-
tical approach is to write a “Monte Carlo” program
that simulates the experiment by following individ-
ual particles through the system, choosing positions
and directions of emission and scattering with ran-
dom numbers according to appropriate probability
distributions, among which is the Rutherford scat-

tering probability distribution to be tested. If you
are an experienced programmer you may want to
try this approach, which is also not a trivial job.
You can probably get advice on how to proceed
from one of your instructors.

2. Determine the differential scattering cross section
per gold atom at an angle (say 30◦) large enough to
reduce substantially the problems of interpretation
caused by multiple scattering.

3. There is a substatial problem with Rutherford’s
distribution that should by now be very apparent:
equations of the form 1/ sin4(θ) approach ∞ in the
limit θ = 0. However, you will not observe an infi-
nite number of particles emitted from the target
when it is at the center position. Try to come
up with an explanation to reconcile the Ruther-
ford model with what you observe. A few things
to think about: multiple scattering; the nature of
scattering cross sections; quantum mechanics.

4.1. Possible Theoretical Topics

• The Rutherford scattering cross section.

• Energy loss of charged particles in matter.
• Multiple Coulomb scattering.

• Silicon barrier detector.

[1] A. Melissinos, Experiments in Modern Physics: Solid-
State Detectors (Academic Press, 2003), chap. 8.5, pp. 344–
354, 2nd ed.

[2] G. F. Knoll, Radiation Detection and Measurement: Semi-
conductor Diode Detectors (John Wiley and Sons, 2000),
chap. 11, pp. 353–404, 3rd ed., covers solid state detectors
at a higher level of detail than Melissinos.

[3] W. Ritz, Astrophysical Journal 28, 237 (1908).
[4] E. Rutherford, Philisophical Magazine 21, 669 (1911).
[5] A. Melissinos, Experiments in Modern Physics: Ruther-

ford Scattering (Academic Press, 1966), chap. 6, pp. 226–
252.

[6] A. Melissinos, Experiments in Modern Physics: Interac-
tion of Charged Particles with Matter (Academic Press,
1966), chap. 5, pp. 152–165.

[7] J. C. M.J. Berger and M. Zucker, Tech. Rep., NIST,
Gaithersburg, MD (1999-2002), URL http://physics.

nist.gov/PhysRefData/Star/Text.
[8] P. Bevington and D. Robinson, Data Reduction and Error

Analysis for the Physical Sciences (McGraw-Hil, 1992), 3rd
ed.

[9] S. Gasiorowicz, Quantum Physics (Wiley, 1974), 2nd ed.
[10] E. Serge, Nuclei and Particles (Benjamin, 1977), chap. 2.

APPENDIX A: EQUIPMENT LIST

Manufacturer Description URL

Canberra PIPS α-particle detector canberra.com

Canberra 2006 Charged Particle preamplifier canberra.com

Canberra Amplifier canberra.com

Ortec Multi-Channel Analyzer ortec-online.com

http://physics.nist.gov/PhysRefData/Star/Text
http://physics.nist.gov/PhysRefData/Star/Text
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Optical Spectroscopy of Hydrogenic Atoms

MIT Department of Physics
(Dated: September 5, 2011)

This experiment uses optical spectroscopy to study the spectra of “hydrogenic” atoms, atoms
with one “optical” electron in the valence electron shell. Measurements include finding the Balmer
lines of atomic hydrogen and the fine structure of sodium lines and the determination of the mass
of the deuteron from the isotope shift. A high-resolution scanning monochromator is used to study
the Balmer lines of hydrogen and the more complex hydrogenic spectrum of sodium, using the
mercury spectrum as the wavelength calibrator. The measured Balmer wavelengths are compared
with the quantum theory of the hydrogen spectrum, and a value of the Rydberg constant is derived.
The transitions responsible for the sodium spectrum are identified, and the regularities in the fine
structure and adherence to the selection rules are observed. A measurement of the isotope shift
between the Balmer lines of hydrogen and deuterium is made from which the ratio of the deuteron
mass to the proton mass is derived.

1. PREPARATORY QUESTIONS

1. Construct as complete an energy level diagram of
atomic hydrogen as you can, and show the transi-
tions that give rise to the Balmer lines. (Inciden-
tally, just exactly what is a spectral “line”?)

2. Define the following terms and, where applicable,
calculate them for the two optical systems used
in this experiment: grating equation, diffraction
orders, angular dispersion, linear dispersion, re-
solving power, spectral resolution, bandpass, focal
length, f/#, and free-spectral range. (See [1, 2])

3. Suppose perfectly monochromatic light of wave-
length 4500 Å enters a Czerny-Turner monochro-
mator with the input slit width set at 10.0 µm,
and suppose the beam fully illuminates the con-
cave grating which is a 10 cm x 10 cm square with
3600 lines mm−1. Make a plot with properly scaled
axes of the light intensity versus angular displace-
ment in the focal plane of the spectrograph in the
first order diffracted image of the slit. Show quan-
titatively the salient features of the multiple slit
diffraction pattern. (see [2])

4. Throughout this experiment the tabulated wave-
lengths of the mercury spectrum will be used as
the calibration reference. Suppose, however, you
had to start from scratch with no reference wave-
lengths. How would you establish an absolute scale
of wavelengths?

5. Predict the isotope shift in wavelength (i.e., the
difference in wavelength ∆λ = λH−λD) of the first
3 Balmer lines of hydrogen and deuterium. (see [3])

2. INTRODUCTION

The study of the optical spectra of hydrogen and other
atoms having a single “optically active” electron in a
spherically symmetric potential was specially important

in the development of modern physics because of the sim-
plicity of the spectra and the clarity with which their
features could be understood in terms of the developing
theories of quantum electrodynamics and atomic struc-
ture. The purpose of this experiment is to acquaint you
with some of these features and with some of the meth-
ods of optical spectroscopy through an investigation of
the spectra of hydrogen, deuterium, and the alkali met-
als.

Bohr’s theory of the optical spectrum of hydrogen,
published in 1913, opened the door to the modern theory
of atomic structure. In 1912 Bohr had come to Ruther-
ford’s Laboratory at Manchester University where the
concept of the atomic nucleus had been invented the pre-
vious year by Rutherford in his theory of the scattering
of alpha particles by thin metal foils. Bohr immediately
began to wrestle with the problem of how electrons in or-
bit about a nucleus can constitute a stable system when
the classical laws of electromagnetism imply they must
radiate their orbital energy and spiral into the nucleus.
Bohr concluded that new, non-classical physical princi-
ples must govern atomic phenomena. By the summer
of 1912 he arrived at his central idea that some form of
quantization restricts the orbits of electrons inside atoms.
He had in mind the quantum idea introduced by Planck
in 1900 in his theory of the spectrum of blackbody ra-
diation and invoked by Einstein in 1905 to explain the
photoelectric effect. Then somebody brought to Bohr’s
attention the simple regularities of the hydrogen spec-
trum, expressed in the formula discovered by Balmer in
1885. Afterward he said, “As soon as I saw Balmer’s
formula the whole thing was immediately clear to me”
(Rhodes 1986 [4]).

The Balmer spectrum of atomic hydrogen is readily
produced by an electrical discharge in molecular hydro-
gen (H2) at low pressure. The resulting collisions of
mildly energetic electrons with hydrogen molecules cause
dissociations of the molecules and excitations of the re-
sulting atoms to states which decay in transitions that
yield the Balmer lines in the visible region of the spec-
trum, as well as the Lyman lines in the ultraviolet, and
other series of lines in the infrared. Measurement of
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the Balmer lines, verification of the Balmer/Bohr
formula for their wavelengths, and determination
of the Rydberg constant are the first objectives
of this experiment.

Interesting variations on the theme of the hydrogen
spectrum are found in the spectra of other single-electron
atoms such as deuterium, tritium, singly ionized helium,
doubly ionized lithium, all the way up to 25-times ionized
iron. One expects the spectra of these atoms to be simi-
lar to that of hydrogen except for the effects of changes in
the reduced mass, the nuclear charge, and the hyperfine
interactions between the electronic and nuclear magnetic
moments. In the laboratory it is difficult to produce a
sufficient density of excited, multiply-ionized helium or
lithium to yield a detectable spectrum of their single-
electron ion species. As for hydrogen-like iron, it has only
been seen in the radiation from solar flares, neutron stars
in accreting binary systems, and the hot intergalactic gas
in clusters of galaxies. But the effect on the spectrum of
a change in the reduced mass of the nucleus-electron sys-
tem is readily observed in deuterium. Measurement of
this “isotope” shift in the Balmer lines and deter-
mination of the ratio of the mass of the deuteron
to the mass of the proton is another objective of
this experiment.

Another kind of “hydrogenic” spectrum is produced by
atoms with one electron outside of “closed” shells. Ex-
amples are the alkali metals, singly-ionized alkaline earth
metals, doubly-ionized elements in the third column of
the periodic chart, etc. In such an atom or ion a single
“optical” electron moves in the spherically symmetric po-
tential of the nucleus and the closed shells of the inner
electrons, and the eigenstates and energy eigenvalues of
the atom can be calculated, in principle, as perturbed
solutions of the Schrödinger equation for a hydrogen-like
atom with a perturbation potential that represents the
distortion of the simple 1/r potential of a point nucleus by
the inner electrons. One effect of this shielding is to en-
hance the splitting of the levels with angular momentum
quantum numbers L > 0 due to the spin-orbit interac-
tion. Measurements of the doublet separations provide
clues to the identity of the states involved in the transi-
tions that give rise to the lines. A third objective of
this experiment is the measurement of the dou-
blet separations of the spectral lines of sodium
and the identification of the quantum transitions
responsible for the lines.

Most of the theoretical background you need for un-
derstanding the atomic spectra to be measured in this
experiment is the Appendices and in Melissinos (2003)
[5]. More thorough treatments can be found in your texts
for 8.04 and 8.05, e.g. [3, 6]. Another useful and clas-
sic reference is Introduction to Atomic Spectra by C. F.
White (1934) [7]. Here we will concentrate on describing
the features of the equipment and procedures peculiar
to the setups in Junior Lab. Excellent discussions of
the optics of monochromators and spectrometers is given
in Jobin Yvon’s Tutorial The Optics of Spectroscopy by

J.M. Lerner and A. Thevenon [1] and, more rigorously,
in Optics by E. Hecht (2002) [2]

3. EXPERIMENTAL APPARATUS

The instrument used to perform this experiment
is the research grade high-resolution (0.03Å) scanning
monochromator (Jobin Yvon 1250M) shown in Fig. 2
which has a maximum resolving capacity Rmax =
λ/∆λ ≈ 104.

The monochromator has been painstakingly
aligned. Please do not alter the arrangement of
the optical components between the entrance and
exit slits. You may adjust the other parts of the
equipment, i.e. the slits themselves and the input
optics which couple the light source to the input
slit. If you suspect misalignment of the internal
parts of the monochromator, ask for help.

The monochromator utilizes what is known as a
Czerny-Turner mount. In this configuration, light from
a source is focused onto an input slit through which it
expands to fill a concave spherical mirror at a distance
equal to the focal length of the instrument. The colli-
mated light then is reflected onto a plane reflection grat-
ing which can be rotated by a precision stepping motor.
Light reflected (and dispersed) from the grating is sent
to a second spherical concave mirror which refocuses the
light in the focal plane of the exit aperture where the pho-
tons are detected and integrated using a photomultiplier
tube.

4. High-Resolution Monochromator

The monochromator is interfaced to a PC running Mi-
crosoft Windows and National Instruments LabVIEW
software over a GPIB connection. A schematic of the
instrument is shown in Figure 2.

The basic steps for using the instrument follow:

1. Note the position of the grating’s mechanical
counter on the side of the monochromator. If it
is not close to zero, please seek help from the tech-
nical staff. At the end of your session, return the
monochromator’s grating to the zero position be-
fore shutting off the motor controller unit. Failure
to do so will frustrate the calibration of the next
group.

2. Turn on the mercury discharge lamp and place it
so that its emission falls upon the input slit.

3. Remove the small lid on the top of the monochro-
mator to verify groove density of the installed grat-
ings. The turret holds two gratings, either of which
may be selected in software: Grating position ‘0’
has 1800 groves mm−1 at a blaze wavelength of
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400nm while grating position ‘1’ has 3600 grooves
mm−1 with a blaze wavelength of 300nm.

It is recommended that you start with the coarse
1800 groove mm−1 grating in order to survey the
broadest portion of the spectrum and explore the
operation of the instrument before making your fi-
nal measurements.

4. Turn on the Ministep Driver Unit (MSD-2) using
the power switch on the back panel. You should
hear a small clunk as the gear motor is engaged.
Power cycling once or twice is sometimes necessary.

5. The LabVIEW monochromator control program is
shown in Figure 1. After the program is loaded,
run the code by clicking on the white arrow in the
upper left corner of the window. The main drop
down menu bar contains various operations for con-
trolling the monochromator.

6. Select the desired grating (‘1800 lpmm’ or ‘3600
lpmm’) and then ‘Change Turret Position’ from the
drop down menu bar. Wait for the menu bar to
revert back to ‘Waiting for next command‘ before
proceeding. You should execute this step even if
the display ‘reads’ the correct position, as it needs
to retrieve information about the grating’s groove
density. The two gratings installed on the turret
have groove densities of 1800 and 3600 gpmm.

7. Examine the mechanical counter on the side of the
monochromator to see that it reads exactly 0.0.
This counter can be used to determine the cur-
rent wavelength setting according to λ = counter×
X(lpmm)
1200lpmm where X is either 1800 or 3600 depend-

ing on the position the grating turret. If not, select
‘Move grating to zero position’ from the menu bar.

8. Replace the lid with 4 screws above the turret grat-
ing assembly.

9. Double check that the top of the monochro-
mator is covered before turning on the high
voltage to the photomultiplier tube as am-
bient light levels can damage a PMT biased
at high voltages. Set the high voltage to +950
VDC.

10. The input and output slits are controlled by mi-
crometers. They can be set from 3 µm to 3mm. Set
the width of both slits initially to be 100µm. Do
not attempt to adjust the micrometers to a
width < 3µm. This can damage the sensitive
slits! The height of the input slit is controlled by
a sliding blade and should be set initially at 2mm.

11. The light ‘acceptance cone’ of the instrument is set
by the size of the grating (110x100mm) and the fo-
cal length of the first spherical mirror (1250mm).
For this instrument, the F# = 11. If you find

that you are photon limited, try using a short fo-
cal length lens to form an image of the lamp at
the entrance slit which is it F# matched to the
monochromator (so as not to under-full or overfill
the first spherical mirror).

The wavelength range of the monochromator is 0-
15,000 units as displayed by the mechanical counter. The
gratings are rotated by a spring-loaded lever set against
the grating mount which is attached to a turret inside
the instrument. Please do not attempt to change
the turrets yourself since a slip may damage the
very expensive gratings.

4.1. MERCURY CALIBRATION SPECTRUM

Your first task is to examine the instruments’ calibra-
tion. Measure several lines in the mercury spectrum (us-
ing the CRC handbooks for reference data) and make a
graph of wavelength vs. mechanical counter reading.

Explore the effects of input and output slit widths,
grating line density, and integration time on spectral in-
tensity, spectral resolution, and spectral bandpass. There
is a LabVIEW program ‘Model Instrumental Profile’ in
the same library as the main control program which can
be used to model the effect of different slit widths. The
acquired spectrum will probably show a profusion of lines
- many more than the prominent yellow, green, blue and
purple lines of the famous mercury spectrum. Several of
the lines are, in fact, ultraviolet lines in the second-order
spectrum, superimposed on the visible lines of the first-
order spectrum. Your first job is to identify all the lines
with the aid of the mercury spectrum table in the CRC
handbook. Later you will use the mercury spectrum as
your calibration for measurements of the hydrogen and
sodium spectra.

Identify the lines by means of a bootstrap operation in
which you first latch onto several of the most prominent
lines, establish a tentative wavelength-position relation,
and then see if the other fainter lines fall in place. The
yellow doublet (5789.7 Å and 5769.6 Å), the green line
(5460.74 Å) and the purple line (4358.33 Å) are particu-
larly useful landmarks within the mercury spectrum. It
will help to make a plot of wavelength versus position.
Look out for second order UV lines superposed on the
first order visible spectrum (e.g. a 2500 Å line in second
order would fall at exactly the same position as a 5000
Å line in first order).

Label as many of the transitions as you can with the aid
of Figure 2.13 of Melissinos (in the figure caption “hydro-
gen” should be “mercury”). Note in particular the lines
due to the interesting transitions 63D → 61P for which
∆S=1, and the 2536.5 Å line which is due to decay of the
first excited state that is involved in the Franck-Hertz
experiment. Check the validity of the dipole radiation
selection rules.

Determine the number of lines mm−1 in the grating by
measuring the linear separation of two identified lines of
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FIG. 1: The LabVIEW software interface to the Jobin-Yvon 1250M monochromator. Note that the user should
always enter spectral units of Å while the ‘counter’ indicator will display the mechanical counter positions necessary
to scan this portion of the spectrum. The limits of the instrument are 0 to 15,000 in mechanical counter units. Be

very careful not to drive the grating beyond this limit!

known wavelength on the acquired spectrum and apply-
ing the grating equation (see Appendix A).

4.2. HYDROGEN SPECTRUM – THE BALMER
SERIES

The goals of this part of the experiment are:

1. to record the hydrogen spectrum at low and high
resolutions together with a mercury calibration
spectrum;

2. to identify and measure the wavelengths of the
Balmer lines using a calibration based on mercury;

3. to compare the measured wavelengths with the
Balmer formula, namely

1

λ
= RH

(
1

n2f
− 1

n2i

)
(4.1)

where nf = 1,2,3,... and ni > nf . nf = 2 corre-
sponds to the Balmer series in the visible while nf
= 1 corresponds to the Lyman series in the UV.

4. to determine the value of the Rydberg constant,
RH = M

M+mR∞ = 1.096776× 107m−1

Acquire a series of hydrogen spectra with superim-
posed mercury calibration spectra, experimenting with
resolution changes and integration times. Take care not
to disturb the instrument between the hydrogen exposure
and the mercury calibration exposure. Identify and mea-
sure as many of the Balmer lines as you can, comparing
the wavelengths with those predicted by Equation 4.1.
One way to do this is to compute a value of λ0 for each



Id: 17.hydrogenicspec.tex,v 1.59 2010/06/29 16:57:12 woodson Exp dbkell 93

FIG. 2: Schematic of the Jobin Yvon 1250M monochromator.

of your measured Balmer lines, using in each case the
appropriate values of nf and ni. From these data, deter-
mine a value and error for the Rydberg constant. You
will probably observe other fainter features in the spec-
trum of the hydrogen discharge tube. Try to identify
them.

4.3. SODIUM SPECTRUM– FINE STRUCTURE

The goals of this part of the experiment are:

1. to obtain a calibrated spectrum of sodium;

2. to measure the wavelengths of the lines and to mea-
sure their doublet separations;

3. to identify the transitions that give rise to the ob-
served lines;
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4. to determine the maximum energy of excitation of
the sodium in the lamp.

The distortion of the 1/r field of the nucleus by the in-
ner electrons has a substantial effect on the fine structure
splittings of the l > 0 states that arise from the interac-
tion between the magnetic moments associated with the
spin and orbital angular moments of the optical electron.
Where the fine structure splitting in hydrogen is very
small and difficult to detect (0.08 Å in Hβ), it is readily
observed and measured in the alkali atoms. It decreases
with n and l approximately as 1/[n3l(1 + l)], and so is
most prominent in the P states. The splitting of the
levels gives rise to a corresponding “doublet” structure
of the spectral lines, with the most conspicuous effects
occurring in the lines due to transitions to and from the
P (l = 1) states. Doublets due to transitions that begin
or end at a common state have identical energy separa-
tions. In the early days these separations provided im-
portant clues for identifying the transitions and deducing
the level structure from observed spectra. See Melissinos
for an energy level digram for sodium.

Obtain various sodium spectra of varying integration
times with a superposed short mercury calibration spec-
trum, both with and without the UV filter. Determine
the wavelengths of all the features of the spectrum.

Identify as many of the sodium lines as you can to-
gether with the initial and final atomic states of the tran-
sitions. Group them according to common final states
and within each group compare the wavelengths with
those expected from energy levels given by the Rydberg
formula

E = E∞ −
hcR

(m+ µ)2
(4.2)

where m is an integer, and E and µ are constants.
Determine the fine-structure splittings of the 2P lev-

els involved in the transitions responsible for the various
doublets. Check whether the doublets originating from
and terminating at the same 2P level have the same sep-
aration (in wave numbers). Determine the ratio of the
doublet separations of the 3P and 4P levels, and com-
pare with the semi-empirical rule that the ratio is pro-
portional to 1/n3. Approach these measurements as an
exercise in experimental accuracy and error estimation,
and their interpretation as a challenge to your under-
standing of atomic structure. Note that in spectroscopic

notation, the upper left superscript is equal to 2S+1 and
the lower right subscript is the total angular momentum
‘j’.

You may find there are lines you cannot identify using
only the sodium lines listed in the CRC Tables. Try to
identify them, i.e. figure out what other element(s) may
be in the lamp.
4.4. Measuring Isotopic Shifts in the Balmer Lines

In this part of the experiment you will determine the
ratio of the deuteron mass to the proton mass by mea-
suring the isotope shifts of the Balmer lines. Most of the
differences in the energy levels of the hydrogen isotopes
(hydrogen, deuterium, and tritium) arise from the differ-
ences in the reduced mass that occurs in the simple Bohr
theory that explains the Balmer formula. (The differ-
ences due to interactions involving the nuclear magnetic
moments are very much smaller in magnitude and not
detectable with our instruments). With a little algebra
the ratio of the deuteron mass to the proton mass can be
expressed in terms of the wavelength λ of a Balmer line
and its shift ∆λ between hydrogen and deuterium.

5. ANALYSIS

Compute the value of md/mp and an error estimate
from the measured separations of the hydrogen and deu-
terium Balmer lines, using the mercury calibration data.
Compare the results with the known ratio of the atomic
weights of deuterium and hydrogen.

5.1. Possible Theoretical Topics

1. Derivation of the grating equation.

2. Bohr theory of the hydrogen atom and the isotope
shift.

3. Schrödinger theory of the hydrogen atom.

4. Fine structure.

5. The correspondence principle.

[1] J. Lerner and A. Thevenon, The Optics of Spectroscopy
(Jobin-Yvon, 2000).

[2] E. Hecht, Optics (Addison Wesley, 2002).
[3] A.P.French and E. Taylor, An Introduction to Quantum

Physics (Norton, 1978).
[4] R. Rhodes, The Making of the Atomic Bomb (Simon and

Schuster, 1986).
[5] A. Melissinos, Experiments in Modern Physics (Academic

Press, 2003), 2nd ed.
[6] S. Gasiorowicz, Quantum Physics (Wiley, 1996), 2nd ed.
[7] C. White, Introduction to Atomic Spectra (McGraw-Hill,

1934).
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APPENDIX A: GRATING PHYSICS

Figure 2 shows the optical layout in the monochro-
mator. Note that the “source” for both this system is
a narrow slit upon which an external light source is fo-
cused. To understand the optics of any spectrograph or
monochromator it is essential to realize that a narrow
spectral “line” is actually a monochromatic image of the
slit. Widen or lengthen the slit and you widen or lengthen
the resulting spectral line. The width of a line depends
on the width of the slit, the sharpness of the focus, and
the intrinsic spectral width of the line, and the number
of reflecting grooves of the grating that contribute to the
total amplitude of the optical disturbance at the focal
plane.

To understand the physics of a monochromator, envi-
sion spherical monochromatic light waves (i.e. “Huygens
wavelets”) diverging from any given point at the slit and
which are reflected by the collimating mirror into plane
waves traveling toward the grating. Reflections from the
grooves in the gratings form cylindrical wavelets which
interfere constructively only in certain narrow ranges of
directions so as to comprise, in effect, a set of plane waves
each traveling in one of those directions.

A second mirror focuses the incident plane waves to a
diffracted image of the original slit at the focal plane of
the monochromator where it then passes through an exit
slit and onto the photocathode of a sensitive photomulti-
plier tube. The spectrum appears as monochromatic slit
images spread out in the direction of dispersion of the
grating. The bandpass spectrum is adjusted by rotating
the grating about a vertical axis.

The gratings used in the monochromator are plane re-
flection gratings.

The most general form of the plane reflection grating is
shown in Figure 3. Each “tread” or “riser” of the stair-
case reflects a narrow rectangular piece of an incident
plane wave, and this piece spreads about the specular
reflection direction according to the principles of Fraun-
hofer diffraction. The resulting cylindrical wavelets may
be thought of as combining at some distance to form
diffracted plane waves with maximum intensities in di-
rections such that the differences in path length along
the reflected rays from successive grooves is an integral
number of wavelengths. This condition is expressed by
the grating equation

mλ = d(sinα+ sinβ) (A1)

where α and β are the angles between the grating nor-
mal GN and the directions of incidence and reflection,
respectively, d is the distance between grooves, and m is
an integer called the “order” of the interference.

The angular dispersion produced by this grating is de-
fined by the differential relation

dβ

dλ
=

1

dλ/dβ
=

m

d cosβ
=

sinα+ sinβ

λ cosβ
(A2)
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FIG. 3: Reflection Grating Geometry: (a) A beam of
monochromatic light of wavelength λ is incident on a

grating and diffracted along several discrete paths. (b)
For planar wavefronts, The terms in the path difference,

d sinα and dsinβ, are shown. (From Thermo RGL
Handbook)

For a given diffracted wavelength λ in order m (cor-
responding to an angle of diffraction β), it is convenient
to characterize the reciprocal linear dispersion or plate
factor P , usually measured in nm mm−1

P =
d cosβ

mf
(A3)

where f is the effective focal length of the instrument.
In the monochromator the grating is used in a Littrow

Configuration where α = β, and under these conditions
Equation A1 simplifies to

mλ = 2d sinβ (A4)

Furthermore, Equation A2 becomes

D =
dβ

dλ
=

2

λ
tanβ (A5)

When | β | increases from 10◦ to 63◦ in Littrow use, the
angular dispersion increases by a factor of ten, regardless
of the spectral order or wavelength under consideration.
Once β has been determined, the choice must be made
whether a fine-pitch grating (small d) should be used in
a low order or a coarse-pitch grating (large d), such as an
echelle grating, should be used in a higher order. In this
experiment, the former solution was chosen to provide a
much larger free spectral range (see below).

At 4358 Å in first order (corresponding to β = 31.5◦

by Equation A4), the grating in our monochromator has
dispersion of 2.8× 10−4 radians Å−1 using Equation A5.
With a focusing mirror of focal length 1250mm following
the grating, the linear dispersion would be 0.35 mm Å−1.

The grating used in the Hydrogenic Spectroscopy ex-
periment is ruled with 2400 (as well as 1800 and 3600)
lines mm−1 (d=4167 Å). From Equation A4, light at 4358
Å will be refracted in first order at β = 31.5◦ and at 63.0◦

in 2nd order. Light emitted at this latter angle will miss
the focusing mirror and thus we are dealing with essen-
tially just 1st order diffraction.
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Finally, from Equation A4 we find that the difference
between two wavelengths diffracted at the same angle in
successive orders, called the free spectral range, is given
by the equation

λ1 + ∆λ =
m+ 1

m
λ1 (A6)

from which

Fλ = ∆λ =
λ1
m

(A7)

APPENDIX B: EQUIPMENT LIST

Item Model Contact

1” UV Filter 6057 oriel.com

1” PCX Lenses Various thorlabs.com

Monochromator 1250M jobinyvon.com

Photomultiplier Tube R928 usa.hamamatsu.com/hcpdf/R928.pdf

H-D Spectral Lamps Custom electrotechnicalproduct.com

Spectral Lamps Various edmundscientific.com

LabVIEW ni.com

usa.hamamatsu.com/hcpdf/R928.pdf
ni.com


Id: 38.neutrons.tex,v 1.92 2011/09/03 22:48:35 spatrick Exp 97

Neutron Physics

MIT Department of Physics
(Dated: September 5, 2011)

The three main parts of the experiment are; the Maxwell-Boltzmann distribution, Bragg scattering
of thermalized neutrons and finally the DeBroglie relation with neutron absorption cross sections.
The technique of time-of-flight spectroscopy with a mechanical beam chopper is used to study the
properties of thermal neutrons in a beam emerging from the MIT research reactor. First, the
distribution in velocity of the neutrons is measured, and the results are compared with the Maxwell
Boltzmann distribution for the temperature of the reactor. Second, the DeBroglie relation between
wavelength and momentum of neutrons is determined from measurements of the angle of Bragg
reflection of the beam from a copper crystal as a function of the velocity measured by time-of-flight.
Third, the absorption cross sections of several elements are measured, and the 1/v dependence of
the boron cross section is observed.

—REQUIRED—

• GERT Training

• Reactor Practicum attendance

• Peruse MIT-NRL website and experiment setup:
http://web.mit.edu/nrl/www/index.html

PREPARATORY QUESTIONS

1. Compute the average velocity,
√
< v2 >, of neu-

trons in a beam emerging from a reactor operating
at 50◦C.

2. Describe how a proportional counter containing
boron trifluoride (BF3) works to detect neutrons.
Why is a low efficiency detector used for the mea-
surement of the velocity distribution of the thermal
neutrons?

3. Compute the angles of first order Bragg diffrac-
tion of 0.025 eV neutrons from the (200) and (111)
planes of crystalline copper. Could you diffract
0.0025 eV neutrons from a copper crystal?

4. Suppose a measurement shows that a sheet of linear
thickness x of a particular element of atomic weight
A and density ρ reduces the intensity of a beam of
monoenergetic neutrons by the ratio I/I0. Derive
a formula for the cross section σ of the element
for absorption of neutrons in terms of these defined
quantities.

SUGGESTED PROGRESS CHECK FOR END OF
2ND SESSION

Using MCS distributions of neutron time of flights at
the near and far detector positions, calculate the velocity
of the particles to zeroth order.

1. Experimentation at the MIT Research Reactor
(MITR): Radiation Protection and Security

This experiment was developed for Junior Lab by Pro-
fessor Clifford Shull [1]. It employs a rather intense beam
of low energy neutrons produced at the MIT Research
Reactor located in Building NW12 on the edge of the
campus at 138 Albany Street. The MIT reactor has
been operating for 30 years and has served as a base for
countless investigations by faculty, graduate and under-
graduate thesis students, UROP and other undergradu-
ate student projects. Use of its facilities is perfectly safe,
providing reasonable and common-sense guidelines and
procedures are followed. To insure that you are familiar
with these procedures, a certain amount of indoctrina-
tion is required. This involves some advance study of
material, followed by a briefing by staff from the Radia-
tion Protection Office and from the Reactor Operations
Group. Following completion of this procedure, you are
“cleared” to perform the experiment at the reactor in the
presence of “badged” reactor escort. In keeping with the
spirit of the Junior Lab, you will operate all the equip-
ment yourself and after two sessions at the reactor you
will able to run the experiment remotely in Junior Lab.

Access to the reactor building is restricted in keeping
with regulations at this and every other nuclear reactor
facility in this country (or anywhere for that matter).
You will be required to take a practicum at the reac-
tor, complete radiation safety training and be escorted
at all times in accordance with federal regulations. For
the purpose of Junior Laboratory experimentation, the
following steps should be taken in order to have access
to the reactor:

1. Download the web-based training instructions from
http://web.mit.edu/8.13/www/38.shtml. Fol-
low these instructions to successfully complete your
General Employee Radiological Training (GERT).
Altogether this will take about two hours, and can
be done at home.YOU MUST COMPLETE
THE GERT BEFORE CONTINUING TO
THE NEXT STEP!

2. Next, you must attend a scheduled briefing session

http://web.mit.edu/nrl/www/index.html
http://web.mit.edu/8.13/www/38.shtml
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(normally held on the 2nd and 3rd Fridays of the
fall term) at the reactor to discuss the material and
to complete any required forms. Following this dis-
cussion, you will be taken on an Inspection Tour of
the reactor by the operating staff. The discussion
period and tour will take about 1.5 hours. You
will notice that entry into the reactor building is
through a locked gate which may be opened with a
magnetically-coded identification card.

The equipment is reserved for your use at the sched-
uled time. To operate the experiment remotely you
must contact the reactor operator 24-hours in ad-
vance to have the neutron-shutter opened for you.
You should also clear any proposed changes to your
scheduled attendance with your section instructor.

3. During your first scheduled period, Dr. Robinson
(ext 3-5082,), a technical instructor, or a TA will be
present to show you the apparatus and procedures.
Please contact Dr. Robinson in advance if a conflict
or change of schedule interferes with this important
introductory session.

2. Nuclear Reactors

2.1. Operational Physics Of The Nuclear Reactor

The nuclear reactor is a chain-reacting system which
bears resemblance in operational principle to a coal fire,
with nuclear reactions being the source of heat rather
than chemical reactions. In a coal fire, some carbon
atoms are excited by thermal “starting” so that they
combine with oxygen (burn). The heat released in
this exothermic chemical reaction activates other carbon
atoms to do the same, thereby forming a chain reaction
without further need of “starting”. The fire grows in in-
tensity until an equilibrium level is reached, wherein heat
losses from the system limit the thermal power available
for further steps in the chain reacting process.

In a nuclear reactor, the counterpart to the carbon fuel
is the nuclear fuel (most commonly the fissionable isotope
of uranium, 235

92 U), and neutrons serve as the commu-
nicative thermal energy counterpart. In 1939 Hahn and
Strassman discovered that neutrons react with uranium
nuclei to cause fission in which the heavy nucleus splits
into two smaller and not necessarily equal nuclei plus
“debris” such as neutrons, gamma-rays, electrons, etc.
The fragmentation can proceed in many different ways.
Typical reactions are shown in Equation 2.1.

1
0n+235

92 U →87
35 Br +148

57 La+1
0 n (2.1a)

→94
36 Kr +139

56 Ba+ 310n (2.1b)

Notice that the above reaction equations are written
as balanced equations in both numbers of nucleons and
charge. However, if you look in a table of precise mass

values, you will find for the nuclear masses of the entries
in the first reaction:

M(23592 U) = 235.11240

M(8735Br) = 86.95722

M(14857 La) = 147.98930
These values imply a mass loss of 0.16588 mass units

in the reaction. Using the Einstein mass-energy equiva-
lence, this calculates to 155 MeV of energy which, accord-
ing to the energy conservation principle, must show up as
kinetic energy distributed among the reaction fragments.
This is a very large amount of energy when compared
with that of ordinary nuclear processes such as alpha,
beta or gamma decay (1–10 MeV), and especially when
compared to chemical reactions (∼5 eV).

A second notable feature of fission reactions is that
neutrons are released as debris. Shortly after the dis-
covery of fission, careful measurements in several labo-
ratories proved that the average number of neutrons re-
leased per fission is more than one. It was then appar-
ent that under appropriate circumstances these neutrons
could initiate fission of other 235

92 U nuclei and that the
physical basis for a nuclear chain reaction exists. The
possibilities for practical nuclear power generation and
bombs were immediately recognized by experts all over
the world, and a race began. The first controlled nuclear
chain reaction was achieved in 1941 at the University of
Chicago by a team under the direction of Enrico Fermi,
and the first bomb was exploded in 1945.

ν, Per Thermal N η, Per Thermal N η, Per Fast N

Nuclide Induced Fission Absorbed Absorbed

233
92 U 2.50 2.27 2.60
235
92 U 2.43 2.06 2.18
239
94 Pu 2.90 2.10 2.74

TABLE I: Number of Neutrons Liberated per Neutron
Capture in Fissile Material.

Table I lists the average numbers of neutrons released
in various fissile materials. In this table, the differences
between ν and η (defined therein) arises because neutrons
are sometimes captured without producing fissioning.

For technical reasons of efficiency and control most nu-
clear reacting systems operate so that the neutrons which
produce the fissioning are “slow”, i.e. have very low ki-
netic energy. On the other hand, the neutrons which
are released in the fission process are “fast” neutrons
with relatively high kinetic energy, on the average about
1.5 MeV. Thus they must be slowed down (or moderated)
to a low energy. This can be done by elastic scattering of
the neutrons from light atoms in a cool moderator. Each
scattering reduces the energy of a neutron until its energy
approaches the mean energy of the moderator atoms in
accordance with the equipartition theorem of statistical
physics. Carbon in the form of graphite was used as the
moderator in Fermi’s first reactor. Light water (H2O) is
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FIG. 1: Schematic Fission Cross-Section for 235
92 U . Data

from atom.kaeri.re.kr/ton.

now commonly used (as in the MIT reactor). Analysis
shows that, on the average, one needs about 18 scatter-
ing events with hydrogen nuclei (protons) to reduce the
neutron energy from 1.5 MeV to a typical thermal energy
of 1/40 eV at which point further scattering events can
raise as well as lower the neutron energy. The thermal
equilibrium is characterized by the physical temperature
of the moderator (about 50◦C at MIT, but much higher
in a power-producing reactor).

The efficiency of neutrons in producing fission de-
pends upon the neutron energy and is conventionally
described in terms of the fission cross section, or effec-
tive target area of the fissioning nucleus, expressed in
barns (a picturesque name for 10−24 cm2). The depen-
dence of this upon neutron energy for the case of 235

92 U
is shown in Figure 1 which displays a nice distinction
between commonly-designated neutron groups: slow or
thermal (< 0.1 eV), resonance (0.1–1000 eV), and fast
(> 10, 000 eV). Note particularly the much higher fission
cross section for thermal neutrons. Neutron physics is
sometimes studied in regimes beyond the above classes,
in particular as cold or ultra-cold (≈10−7 eV). Ultra-cold
neutrons (UCN) exhibit very interesting properties. For
example, they cannot penetrate surfaces and can be con-
tained in a “bottle”!

An important quantity for reactor design purposes is
the fission cross section at the thermal energy which is
attained by most of the neutrons after moderation. For a
moderator kept at temperature T (absolute Kelvin), the
thermal energy is kT and at room temperature this is
about 1/40 eV. The cross sections for fissionable nuclei
are listed in Table II.

Nuclide Fission Capture Capture/Fission

(barns) (barns) ratio

232
90 Th — 7.4 —
233
92 U 527 54. 0.102
235
92 U 577 106. 0.184
238
92 U — 2.7 —
239
94 Pu 742 287. 0.387

TABLE II: Thermal Neutron Cross-Sections for Nuclear
Materials.

2.2. Design Features of a Nuclear Reactor

In the preceding section, we have surveyed some of
the physical concepts and parameters that are of signif-
icance in thinking about a nuclear chain reaction. Of
course, this is far removed from answering the question,
“how to make it work?”. Many different reactor designs
have evolved, each one aimed at achieving certain ob-
jectives. Research reactors produce radiation, radionu-
clides or other products useful in scientific and medical
studies; power reactors produce energy for practical use;
production reactors use excess neutrons to transmute the
abundant non-fissionable isotope of uranium, 238

92 U , into
fissionable plutonium, 239

94 Pu for bombs.
Components of a reactor that are common to all de-

signs include:

1. Fuel Elements - Either natural uranium or ura-
nium enriched in the isotope 235

92 U , usually in the
form of uranium oxide or alloyed with aluminum
and sealed in aluminum tubes or plates.

2. Moderator - Frequently light or heavy water, but
in some cases graphite or beryllium.

3. Thermal Heat Transfer System - Removes the
heat generated by conversion of the kinetic energy
of the fission fragments. The latter are entirely
retained in the fuel elements.

4. Control Elements - Neutron absorbing elements
such as cadmium are used to control the neutron
flux density and hence the rate of the chain reaction
and power output of the reactor.

5. Surrounding Radiation Shield - Intense neu-
tron and gamma radiation, produced by the fission
process and the radioactive decay of fission frag-
ments, must be contained by shielding.

The simplest spatial configuration of these components
would be many small fuel elements positioned in a spatial
lattice and immersed in a liquid moderator which is cir-
culated through an external heat exchanger to dissipate
or utilize the heat generated by the process. To maintain
the desired power level thermometers and/or radiation
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FIG. 2: Experimental setup for time-of-flight
spectroscopy at the MIT Nuclear Reactor.

monitors would be connected to servo-mechanisms to ad-
just automatically the positions of cadmium control rods
inserted into the lattice. Details of the particular features
of the MIT Reactor will be provided to you at the time
of your briefing. Useful references on nuclear engineering
and reactors include [2–4].

3. Part I: Study of the Maxwell-Boltzmann
Distribution of Neutrons in the Nuclear Reactor

In all of the present experimentation we shall use a
pulsed, collimated beam of neutrons emerging from the
reactor in a setup shown schematically in Figure 2. The
distribution in energy of the neutrons in the beam re-
flects the equilibrium spectrum of the moderated neu-
trons in the reactor. In accordance with the principles
of statistical physics, we anticipate that this spectrum
is the Maxwell-Boltzmann spectrum characterized by a
temperature that is the same as the physical temperature
of the moderating agent in the reactor (normal water in
the case of our reactor), providing complete moderation
of the neutrons has occurred. Thus we can think of the
neutrons in the reactor as constituting a neutron gas in
thermal equilibrium with the moderator, with a certain
density and temperature. We will examine the velocity
spectrum of the neutrons by letting some escape as a
collimated beam through a small opening in the reactor
shield.

We will measure the velocity spectrum by timing the
flight of individual neutrons over a laboratory distance
of about 1.5 meters. We do this by “chopping” the beam
as it emerges from the reactor to produce periodic short
bursts of neutron intensity. After traveling the flight dis-
tance the neutrons are detected with a small neutron
counting tube, and the occurrence times of the individ-
ual counting pulses relative to the starting time of the
burst are recorded with a multichannel scaling (MCS)
card.

axis
spin

neutron

L
flight distance

Chopper Wheel

slow
neutron

fast

BF  detector

fixed slit

from reactor
neutron beam

spin axis to beam = 53 mm
Chopper slit width = 0.95 mm

2.50 mm high
1.00 mm wide

FIG. 3: Schematic diagram of the time of flight
spectrometer showing the beam chopper and the BF3

detector.

3.1. The Neutron Chopper

The chopper is a slotted disk of neutron-absorbing cad-
mium which rotates about an axis above and parallel to
the neutron beam line, as illustrated in Figure 3. Cad-
mium is very absorptive to neutrons of energy less than
about 0.40 eV (speed of 8760 m/sec), and serves as a
good shutter for thermal neutrons. The cadmium disk
of thickness 1 mm is sandwiched between two aluminum
disks for mechanical stability. Around the periphery of
the disk assembly, eight radial slots have been cut. The
width of each slot is 0.95 mm. Immediately upstream of
the chopper disk is a fixed slit opening made of neutron
absorbing material (boron containing plastic) with width
1.00 mm and height 2.5 mm. This serves to define the
beam size entering the chopper assembly. The axis of
rotation is located 53 mm above the geometrical center
of the defined neutron beam. A small speed-controlled
synchronous motor rotates the disk. Every time a radial
slit passes the fixed slit a burst of neutrons is admitted to
the flight line. Since the slit widths are nearly equal the
time structure of intensity in this burst (which may con-
tain several hundred neutrons) is triangular, with a full
width at half maximum (FWHM) determined by the slit
width and rotational speed. You should convince your-
self of this feature. Also, consider what it would be for
the case of unequal slits.

The rotational speed of the synchronous driving motor
is fixed by the power line frequency and is seen as a digital
display of the rotational speed in RPM or the neutron
burst repetition rate in Hertz. This frequency will be
240 Hz throughout the experiment.

It is necessary to establish a reference time for the ori-
gin of each of the neutron bursts. This is done by the
periodic interruption of a light beam passing parallel to
the neutron beam line between a tiny photodiode and
photodetector which is positioned about 90◦ around the
disk from the neutron beam. The geometry is arranged
so that a light signal occurs a short time before each neu-
tron burst. The light signal sets the time origin of the
MCS used to measure the neutron flight time. Thus the
actual neutron burst origin time is slightly later than the
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MCS origin time by a certain fixed delay which must be
determined as a part of the experiment.

3.2. The Neutron Detector

Small gas proportional counters are used as neutron
detectors. For this part of the experiment, the counter
of choice contains BF3 gas in a sealed aluminum tube
of diameter 0.5 inch and length 3 inches. The neutron
beam is located near the bottom (vertically) center (hor-
izontally) of the BF3 detecor’s range of motion. High
voltage (bias the BF3 detector at +1000 VDC and
the He-3 detector at +1600 VDC) is applied be-
tween the metal tube and a fine center wire. The re-
sulting electric field collects the charges produced by gas
ionization caused by the energetic nuclei from the reac-
tion 1

0n +10
5 B →7

3 Li +4
2 He. The 10

5 B isotope forming
18.8% of natural boron captures neutrons with a large
cross section that varies as 1/v, where v is the neutron
speed. Many nuclei, such as 1

1H , 6
3Li,

3
2He, and 197

79 Au
exhibit this “1/v law” capture of slow neutrons (see the
plot of the 235

92 U fission cross section in Figure 1).
Our counter contains BF3 gas at a pressure of

40 cm Hg; a typical neutron passing along a diameter
will be detected with an efficiency of about 1%. It is
purposely selected to be “thin” (low efficiency) so that a
simple analytical correction can be applied in the analysis
of the spectral data. Electrical pulses from the counter
are amplified in a preamplifier and in a main-line am-
plifier, selected by a single channel “window” analyzer,
and counted by a scaler. Thereafter they are sent to an
oscilloscope for observation, and to a MCS for arrival
time sorting. The output pulses from the amplifier are
about 5 µs in duration. Operating details concerning the
counter high-voltage, amplifier settings and MCS oper-
ating conditions are posted at the experiment location.

3.3. Thermal Spectrum Theory

The Maxwell-Boltzmann (M-B) distribution law de-
scribes the distribution in speed (or kinetic energy or
momentum) of atoms in a gas in a state of thermal equi-
librium. Neutrons within the reactor can be expected to
obey a similar distribution law, namely

n(v)dv =
4N√
π

(
v2

v30

)
exp

(
−v

2

v20

)
dv, (3.1)

where v is the neutron speed (m/sec), v0 is the most
probable speed (i.e. the peak of the speed spectrum), N
is volume density of all neutrons (neutrons/m3), n(v)dv
is the neutron density for those with speeds falling in the
speed interval between v and v + dv (see texts on gas
kinetic theory, e.g. Reference [5, 6]).

This can be recast in terms of other kinetic parameters

such as kinetic energy E for which we have

E =
1

2
mv2 and dE = mvdv, (3.2)

yielding

n(E)dE ∝
(
E

E0

)1/2

exp

(
− E

E0

)
dE, (3.3)

with

E0 =
1

2
mv20 = kT, (3.4)

where m is the neutron mass.
The corresponding flux density in the collimated beam,

i.e. the number of neutrons per unit area per unit time
with velocity between v and v+dv passing a given point,
is

j(v)dv = vn(v)dv

= J0v
3 exp

(
−v

2

v20

)
dv. (3.5)

As mentioned above, the neutron detector is a “thin”
counter for which the efficiency e varies with neutron
speed as 1/v. Thus

e = A(1/v), (3.6)

with A = some constant. If we now call j′(v)dv the
number of detected neutrons per unit area of detector
per unit time with velocity between v and v + dv, then

j′(v)dv = Bv2 exp

(
−v

2

v20

)
dv, (3.7)

with B is a constant. Can you figure out the reason for
using a “thin” counter rather than using one with higher
efficiency of say 50%, aside from the fact that we don’t
need the higher efficiency because the measured intensity
is adequately high?

The quantity actually measured by the apparatus in
each event is the time interval between the fiducial signal
from the photodetector and the detection of a neutron
by the BF3 counter (rather than the velocity). The ac-
cumulated data in the MCS is the number Ni of neutrons
detected in the i-th MCS-time channel corresponding, af-
ter appropriate calibration and zero-time correction, to
a flight time ti . Since L = vt, we have

Ni = D

(
1

t4i

)
exp

(
− L2

v20t
2
i

)
∆t, (3.8)

where ∆t is the finite and constant width of the MCS-
time channels, and ti is a flight time within the i-th in-
terval, and D is a constant.

We note that

ln(t4iNi) = −
(
L

v0

)2(
1

ti

)2

+ constant, (3.9)
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or, equivalently, that

ln

(
Ni
v4i

)
= Q− v2i

v20
, (3.10)

where Q is a constant. Thus a display of the quantity
(Ni/v

4
i ) against v2i on semi-log graph paper should be a

straight line with negative slope (1/v20). It will be conve-
nient to display the data in this way to check the validity
of the Maxwell-Boltzmann distribution and to evaluate
v0 and T .

3.4. Experiment Procedure—Part I

1. Examine the apparatus and, with the aid of an in-
structor, identify the components and their func-
tions.

2. Activate the chopper motor and wait until it settles
to the rotational speed corresponding to a neutron
burst frequency of 240 Hz.

3. Place the BF3 counter (already mounted in a small
shield box) at the location point very close to the
chopper and set the counter voltage and amplifier
conditions at the prescribed levels. Instructions for
this will be posted locally.

4. Open the shutter to admit the neutron beam to
the apparatus—a yellow “beam-condition” warning
light will be activated. The neutron beam is fully
exposed until it is finally absorbed in a beam stop
at the end of the flight path. The beam is of
high intensity and exposure of any part of
the body to it must be avoided. In addition
to the thermal neutrons used in this experiment,
there are also gamma-rays and unmoderated fast
neutrons which are damaging to tissue.

5. Examine the neutron detection pulses from the am-
plifier on the oscilloscope screen, noting their time
width.

6. The Multi-Channel Scaler (MCS) that you will be
using is a board plugged into the PC. The presets
should be set as follows:

a) Dwell time 2 µs

b) Pass Length 1000

c) Pass Count 432,000

The dwell time (s ch−1) multiplied by the pass
length (ch) must be less than the time interval
between consecutive neutron bursts (see note 2
above). Instructions for using the MCS software
can be found on-line from the “Help” Menu and
in the software the manual in the top desk drawer.
Don’t forget to EXPORT the data files into a text
readable format after saving them to the default
Perkin Elmer format. This latter format is not

readable from computers that do not have the MCS
software installed.

7. Set the MCS into operation and note the build-up
of neutron counts in early time channels of the MCS
time display. Since the flight distance is so small
(only about 5 cm), neutrons of different speed do
not have a chance to spread apart before detection.
Collect data over a recorded time interval, stop the
collection, and save the data to a file in your per-
sonal directory. Only a short collection time will
be needed for this, as you see the quick build-up on
the MCS display.

8. While you have the counter at the front position
just behind the chopper, you can measure the in-
tensity of the beam coming through the stopped,
open slit. From this intensity and the known geom-
etry of the collimator tube in the reactor shield, you
can calculate an approximate value for the neutron
flux inside the reactor. With the chopper stopped,
adjust its angular position to get the maximum in-
tensity as seen in the 5-second counting intervals on
the scaler digital display. Record a number of these
counts for averaging. Do the same with the chopper
oriented so the beam is obstructed by the cadmium
in the chopper. The difference between these aver-
age values divided by the detector efficiency gives
the thermal neutron intensity expressed in neutrons
per second. Using the formulae given in Appendix
B, along with the known geometrical factors, you
can calculate the neutron flux and the neutron den-
sity inside the reactor.

9. Move the BF3 counter to the back position along
the flight channel. Again, note the build-up of neu-
tron counts on the MCS display. Neutrons are now
found in later time channels distributed over a time
spectrum. Collect data for a recorded time inter-
val. This will take about 30 minutes to get sta-
tistically meaningful numbers because the neutron
counts are now spread over many channels. (The
electronic cut-off of high channels is purposely in-
troduced to eliminate overlap from one burst to
another.)

10. Close the neutron beam shutter. Measure the dis-
tance from the cadmium in the chopper disk to the
counter tube center for both positions. Always take
these measurements in centimeters with an accu-
racy to about one millimeter. Record this measure-
ments along with rotational speed, the MCS chan-
nel width, and the collection time. Double check
your distance measurements, since an error here
will affect all of your later analysis.
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3.5. Data Analysis

The procedures detailed in this section are readily ac-
complished using Matlab on Athena or some other math-
ematical package of your choice.

1) Plot your data for the small distance case, neutron
counts vs. channel number, and determine the center po-
sition and uncertainty. Is the shape what you expect, and
does the FWHM agree with what you calculate? Remem-
ber that the neutrons have had little chance to spread
out. On the other hand, the finite flight time over your
small distance has shifted this peak by a small amount
relative to the neutron burst origin time. You can cor-
rect for this shift by making use of the observed travel
time of the peak in the MCS display for neutrons going
from L1 (the short flight distance) to L2 (the long flight
distance). Thus the correction is

L1

(L2 − L1)
(C2p − C1p), (3.11)

and the neutron time origin channel C0 becomes

C0 = C1p −
L1

(L2 − L1)
(C2p − C1p). (3.12)

Here, C1p is the MCS channel of the center of the ap-
proximately triangular distribution obtained when the
detector is at the near position; C2p is the MCS channel
position for the peak of the distribution recorded when
the detector is at the far position which is at a distance
L2 and correspondingly for C1p. It is interesting to note
that the speed of the neutrons in the peak in the MCS
time distribution

Ni = C

(
1

t4i

)
exp

(
− L2

v20t
2
i

)
∆t, (3.13)

becomes
√

2v0 , as you can establish by setting its time
derivative to zero, thereby obtaining tpeak, and looking
at this dependence on L. This can be compared to the
peak in the velocity distribution which is v0.

Note that the channel spread about the peak centered at
C0 (in the data taken at the small distance position) is a
direct representation of the time resolution of the system.
All later measurements are smeared by this limiting time
resolution.

2) Plot a spectrum of your data as taken at the back
counter position. Identify on your graph the neutron
origin channel position C0—all flight times are now es-
tablished relative to this.

Create a plot of all the data points and an interpolated
line. We expect that the spectrum will approach equal
asymptotic levels at the two extremes of the spectrum,
and that this is a background level by which all observed
spectral intensity values should be corrected. Are the

deviations of individual points from your smooth curve
meaningful on statistical grounds? Remember that the
collection of N statistically distributed events in a mea-
surement means that there is 68% probability that the
value N will fall within 〈N〉 of the true value as estab-
lished by many repetitive measurements.

Since the expected M-B spectrum approaches zero
asymptotically at both extremes of the spectrum (be-
cause of the t−4 dependence at the high channel (low
energy) end and the exponential dependence at the low
channel end), the residual or base level that is observed
represents a background intensity level arising from leak-
age neutron events not associated with opening or closing
the chopper. Thus all observed intensities should be cor-
rected by subtracting this background level. In assessing
this background level for your data, you should note that
t→ 0 for channels just above C0 so the intensity level for
channels just above C0 should represent the base level.
On the other hand, at the other extreme, near the elec-
tronic cut-off level of about channel 1000 (or whatever
the number of channels has been set to in the MCS soft-
ware), the M-B spectrum has not completely collapsed to
zero and the observed intensity may be somewhat higher
that it would be for even lower channels. We can correct
for this residual M-B intensity in high channels by noting
that its value, relative to the peak intensity depends upon
v0. Previous experimentation has determined v0,
and calculation has shown that the ratio of this
residual intensity in channels above 950 to that
at the peak is 0.013. Using this ratio value, determine
the background base value which is most consistent with
the observed intensity pattern at both ends of the spec-
trum. Pay no attention to intensity values corresponding
to negative channel numbers (below C0) since they are
associated with transparency of the Cd in the chopper
and with other leakage neutrons.

3) Create data vectors of Nobserved−Nbase level and cor-
responding Cobserved channel −C0. Follow with calculated
values of the speed v using your measured flight distance
and the individual channel time. Carry a number of sig-
nificant figures that is consistent with the measurement
precision.

Finally, tabulate values of Ncorrected/v
4 and v2. Make a

semi-log plot covering about 3 log cycles of these quan-
tities. According to our M-B theory, these points should
fall on a straight line whose slope is 1/v20 . Graphical
trick: to make full use of 3-cycle log paper, adjust your
intensity data by an arbitrary multiplicative factor—this
will not affect the slope.

4) You will probably find that the high-velocity data
points (> 5000 m/sec) in this semi-log display fall above
a straight line fitted to the low-velocity data. Two effects
contribute to such discrepancies: (a) The finite duration
of the pulses of neutrons that emerge from the chopper
causes a smearing of the observed velocity distribution
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so that it differs significantly from the true flight time
distribution (see if you can estimate the effect of this on
your data); (b) High energy neutrons generated in the fis-
sion process and encountering the relatively cold moder-
ator, are continually diffusing in “velocity space” toward
lower velocity with the diffusion driven by an excess at
high velocities over the equilibrium Maxwell-Boltzmann
distribution.

Deviations from linearity of the plot may also occur at
low velocities (< 1000 m/sec) for various reasons such
as the high absorption cross sections of reactor materials
for slow neutrons. It must be recognized, also, that the
background intensity makes up a larger portion of the
observed counting rates at the low and high-velocity ends
of the data.

In any event, when fitting a straight line to the data,
remember both effects and pay special attention to the
main center region of the range. Since your physical judg-
ment must establish the range of linearity, it is hardly
worthwhile to use a least-squares fitting of the points to
a straight line. Use your best judgment in this and es-
timate the uncertainty in the slope of the line. Don’t
hesitate to calculate values and plot additional points
beyond your initial sampling of your smoothed spectral
curve in assessing the best line fit. If you find gaps in
your selected point distribution, analyze additional in-
termediate ones which will help in recognizing the linear
range.

5) Evaluate the slope of your best straight line (be very
careful in this—students frequently have much trouble
with the slope of a line on semi-log display) and calculate
v0, E0 = 1/2mv20 , and T from kT = 1/2mv20 , and justify
this relation. Recall in gases Ekinetic = 3

2mv̄
2. Does your

neutron temperature T agree with that of the moderator?
Does the peak position in the observed spectrum agree
with that expected from your fitted parameters? From
the uncertainty in the slope of the line, what are the
uncertainties in these quantities?

6) Calculate the neutron flux and neutron density in
the reactor from your data obtained in Sections 3.4, 7
and the analysis in Appendix B. If we think of these
neutrons as being confined in a walled container, what
pressure would they exert on the walls?

4. Part II: Bragg Diffraction of Neutrons and the
De Broglie Relation

See Bragg (1915) [7].
In the early years of the twentieth century, physicists

were faced with the wave-particle dilemma in describing
the properties of the electromagnetic field and how it in-
teracts with matter. Young’s interference experiments
with visible light (1801), Hertz’s experiments with radio
waves (1887), and von Laue’s discovery of X-ray diffrac-

tion (1912) showed wave interference and provided mea-
sures of wavelength for electromagnetic radiation from
radio to X-rays. On the other hand, Planck’s theory
of the black-body spectrum (1901), and Einstein’s the-
ory of the photoelectric effect (1905) showed that elec-
tromagnetic radiation is absorbed at a surface in dis-
crete amounts of energy (quanta) and not as a contin-
uous flow. Bohr’s theory of the hydrogen atom (1913)
showed that electromagnetic energy is emitted in discrete
quanta. And, finally, Compton’s interpretation of his
own experiments on the incoherent scattering of X-rays
(1923) showed that X-rays of wavelength λ interact with
free electrons like particles with energy hc/λ and mo-
mentum h/λ. A composite picture was thus formed in
which electromagnetic radiation is characterized by the
seemingly contradictory concepts of wave frequency and
wavelength, and particle momentum and energy.

Recognizing this interrelation for photons between
wave and dynamical properties, De Broglie suggested in
1924 (in his PhD thesis) that similar properties should
characterize all particles of matter. At that period, mat-
ter was considered to be made up of electrons and pro-
tons. This meant that electrons and protons (or any
composite of them like an atom, a baseball or the earth)
in motion should possess a wave character. De Broglie
proposed a relation between the wavelength (λ) and mo-
mentum (mv):

λ =
h

mv
, (4.1)

where h is Planck’s constant. This relation is the same as
for photons, with, however, the recognition that photon
momentum p = E/c (with the photon energy E = hν and
ν the wave frequency of the electromagnetic photon).

Although not taken too seriously at first (it is re-
ported that Einstein himself was incredulous initially),
De Broglie’s suggestion was given full acceptance with
the discovery of electron diffraction by G. P. Thomp-
son and by Davison and Germer in 1927. They drew
upon the fact that atoms in a crystal are positioned rel-
ative to each other in a very regular way, and that their
spacing is a few Angstroms (1Å = 10−10 m) in scale.
Their experiments on the reflection of electron beams
from metal crystals demonstrated that wave interference
effects were obtained with electrons of an energy such
that their De Broglie wavelength is comparable to the
separation of the crystal planes, a result completely anal-
ogous to that previously observed with X-ray photons
(which certainly were endowed with a wavelength) and
interpreted by Laue and Bragg. Since that time, further
confirmation of the wave-particle duality has come for
other types of particles (waves) such as alpha particles,
atoms, neutrons and mesons. We shall see this duality
in full display in Section 4 of this experiment, where we
shall again directly measure the velocity of a group of
neutrons and at the same time observe the diffraction of
these same neutrons by a crystal, thereby establishing
their De Broglie wavelength.
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FIG. 4: Schematic representation of a crystal with rows
of atoms extending into the page.
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FIG. 5: Schematic representation of a diffraction
grating as a one-dimensional set of scattering centers.

We shall first need to know some things about crystals
and the wave interference effects that may be observed
with them. As mentioned above, a crystal represents a
collection of many atoms bound together by inter-atomic
forces to form a three-dimensional solid (however, two-
dimensional cases and liquid crystals are known to exist).
In a perfect crystal, the atoms are positioned in a spatial
array (or lattice) with precision, this being determined
by the symmetry and balancing of inter-atomic forces on
each atom. With this regularity of position, illustrated
schematically in Figure 4, it is easy to envision the over-
all crystal as being made up of parallel sheets (or planes)
of atoms which can serve to provide wave interference
between the components of radiation scattered by indi-
vidual atoms. Almost any textbook on general or mod-
ern physics (e.g., reference [8, 9]) will have an elementary
derivation of the conditions necessary for constructive in-
terference of radiation scattered from atoms in a crystal
plane. These conditions are expressed by Bragg’s Law,

nλ = 2d sin θB , (4.2)

where n = order of diffraction (1, 2, 3, . . .), λ is the wave-
length, d is the interplanar spacing, and θB , called the
Bragg angle, is the grazing angle of incidence and reflec-
tion. It is deceptively similar in appearance to the law de-
scribing constructive interference from a one-dimensional
set of scattering centers (e.g. a grating), and it is worth
pointing out the difference.

In the one-dimensional case, illustrated in Figure 5,

a
a

a

a

a
a

a
a

a

    atoms

simple
 cubic cubic

body-centered face-centered
    cubic

FIG. 6: The three forms of cubic crystals.

the approach angle θ1 may have any value, and the ex-
iting angle θ2 for constructive interference is then de-
fined by the interference equation with θ2 not necessarily
equal to θ1. For reasons not so obvious, this general-
ity is not present in three -dimensional diffraction where
θ1 = θ2 = θB . In fact, diffraction from a crystal al-
ways occurs in symmetrical fashion from atom planes
with both incident and emergent angles being equal to
θB . (This subtle distinction is discussed in [10] and in
various texts on crystallography, e.g., X-Ray Crystallog-
raphy, M. Wolfson, Cambridge 1970.) A given set of
atom planes of spacing d will reflect radiation of wave-
length λ with intensity concentrated in a narrow range of
angles (typically within 10−5 radians) with a maximum
at the Bragg angle θB defined above. This is not true
for the one-dimensional grating where, for any incident
angle θ1, diffraction maxima occur at angles θ2 given by
the formula in the figure, provided d > λ.

A crystal may be considered as being made up of an
infinite number of different atom plane layers, each set
with a different interplanar spacing and different orien-
tation. Bragg diffraction can occur from any of these
sets as long as the Bragg Law is satisfied. What we need
at this point is a shorthand method of classifying these
different sets of planes, which we now develop. Since
nature causes atoms to pack together in different ways
(but always in a given way for a given species of atoms
or molecules; a change of external conditions such as the
temperature, pressure, or magnetic field application can
invoke a change of structure, a phase transition), it is ap-
parent that many different forms of crystal structure may
be encountered. These are classified according to symme-
try characteristics: cubic, hexagonal, ortho-rhombic, etc.
Common to all forms is the concept of the unit cell which
represents the smallest collection of atoms (or molecules)
which, when repeated along the three axes, make up the
whole crystal. Thus cubic crystals have cubic unit cells
and the size of the unit cell a0 is set by one dimension.
However, cubic cells may contain any one of three differ-
ent atom configurations as shown in Figure 6.

For the general case, the unit cell can be defined by
three vectors a, b, and c directed parallel to the unit
cell edges and of magnitude equal to the size in that
direction. Furthermore, we can identify the orientation
of any plane of atoms in the crystal by the intersections
of this plane with the three axes of the unit cell. It is a
great convenience to do this in terms of the Miller indices
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FIG. 7: Diagrams showing how Miller indices are used
to define crystal planes.

h, k, and l (small integers) with a/h, b/k, c/l being the
intersection points of the plane with the respective axes,
as illustrated in Figure 7.

We label a particular set of atomic planes as being
(hkl) planes according to these Miller indices. A little
geometry will show, for the case of a cubic crystal, that
the interplanar spacing dhkl will be given simply by

dhkl =
a0

(h2 + k2 + l2)1/2
. (4.3)

In our experiment, we shall be using a metal crystal
of pure copper which has a face centered cubic struc-
ture (four unique atoms per unit cell) with unit cell size
a0 = 3.6147 Å. Note that this value of a0 may be cal-
culated from the measured density ρ = 8.939 gcm−3,
Avogadro’s number 6.0221 × 1023 atoms per mole, the
molecular weight 63.57gXF, and the number of atoms
per unit cell. Check that this is so. Also calculate inter-
planar spacing values for planes (200), (220), and (111)
which you will be using in the experiment. You should
identify, in the above figure of cubic unit cells, just which
atoms are unique to the unit cell—there are four for face
centered cubic (how many are there for the other cells?).
Incidentally, among some common elements, Fe, Cr, Na,
and Mo crystallize as body centered cubic (bcc) and Cu,
Al, Au, and Pb as face centered cubic (fcc). No element
is known to exist in simple cubic form.

Before leaving our crystallographic considerations, we
should investigate whether there are restrictions on the
appearance of Bragg diffraction from the many (hkl) sets
of planes. To illustrate this for our fcc case, a view of
the unit cell normal to a face shows atoms and atom
planes as shown in Figure 8. There are sheets of atoms
separated by the fundamental distance d (002) = a0/2,
with common atomic density in all sheets. If we were
to attempt to observe (001) diffraction as prescribed by
Bragg’s Law, we would find reflected rays (A) and (C) to
be in phase, as would (B) and (D), but the two groups
would be out of phase with respect to each other, and
hence overall destructive interference would occur. Thus
zero intensity in (001) diffraction is expected, but finite
intensity in (002) diffraction. Without going into detail,
the general rule for an fcc structure is that the
Miller indices must be either all even integers or
all odd integers in order for constructive inter-
ference to occur. Thus there will be no (100), (110),
(221) diffraction occurring, but there can be (020), (111),

( B )

( A ) 

( C )

( D )

d002
001

d

d

o

FIG. 8: Illustration of Bragg reflection from a fcc
crystal in which destructive interference between

reflections from adjacent (001) planes occurs.
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FIG. 9: Schematic diagram of the neutron beam
diffracted from the copper crystal. The distance from
the chopper to the crystal is 33.63± 0.06 inches. The

distance from the crystal to the detector is 20.00± 0.06
inches.

(022), (311) for fcc. Other crystal structures would have
different selection rules. Miller indices can be taken neg-
ative as well as positive, and a negative index is written
as a bar over the index. Thus (111̄) would designate an
allowed set of planes in the fcc structure Bragg diffrac-
tion.

4.1. Experiment Arrangement and Procedure

We shall use the same neutron beam as in Section 3.
As we have seen, it is a full spectrum beam with all neu-
tron speeds (or as De Broglie asserted, all wavelengths).
However, before detecting it on its normal straight flight
line, we shall interrupt it with a diffracting crystal of
copper. After repositioning the detector, we can detect
the Bragg diffracted beam in the direction that makes an
angle of 2θB with the incident beam, as shown in Figure
9.

The copper crystal will be positioned along the neu-
tron flight line, somewhat in front of the position where
you placed the detector for the Section 3 spectrum mea-
surement. Notice that there is a fixed slit opening (of
width 3.0 mm) just before (upstream from) the crystal
position, and this serves to further define the direction
of neutron ray trajectories (along with the fixed slit in
front of the chopper disk shown in Figure 3) that can hit
the crystal. It was there during your spectrum measure-
ment, but served no particular purpose, since we were
interested only in flight distance to the detector and not
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FIG. 10: Illustration of the orientation of the crystal
planes in relation to the geometrical shape of the

crystal.

the direction of rays.
If a particular set of crystal planes (hkl) is oriented at

an angle θB from the incident beam direction, neutrons
with wavelengths in a narrow band will satisfy Bragg’s
Law and hence be diffracted at angles in a narrow range
around 2θB from the incident beam direction. We can de-
tect this diffracted beam by placing our detecting counter
at the appropriate angular position. In our experiment,
we shall select various orientation positions of the crystal
(thereby selecting θB) and simultaneously measure the
flight time of the diffracted neutrons which arrive at the
detector. This provides both the wavelength λ (from the
Bragg Law) and the velocity v of the diffracted neutrons.
By changing the crystal orientation (and the detector po-
sition), we can scan over a range of λ and v and test the
De Broglie relation in a very direct way.

4.1.1. The Crystal

The copper crystal has been grown and cut in the form
of a small disk of diameter about 15 mm and thickness
about 2.3 mm. Copper metal exists usually in polycrys-
talline form, i.e., it is made up of many microscopic crys-
tallites (perhaps about 1 µm in size) oriented at random.
Our single crystal has been prepared in a special way
(called the Bridgman method): the metal was melted in
a crucible of special shape, and the temperature was very
slowly reduced through the freezing temperature with a
controlled temperature gradient. This permits a single
crystal to grow to a size limited only by the crucible di-
mensions (if the conditions are right!). Our crystal disk
has been cut from such a grain after establishment of the
grain orientation by diffraction techniques (neutrons, of
course!). The flat faces of the disk have been cut and
surface polished to high precision—they are parallel to
(110) crystallographic planes within 1 arc minute. Look-
ing down on the crystal disk, we see the unit cell as illus-
trated in Figure 10.

In testing the De Broglie relation, we shall use diffrac-
tion from the (002) planes which are accurately perpen-
dicular to the (110) faces. Thus we shall be using the
disk in transmission orientation, i.e., the neutrons will

pass symmetrically through the disk. Copper is rela-
tively transparent to neutron radiation with an absorp-
tion cross section of 3.69 barns for thermal radiation of
speed 2200 m/sec. You should calculate the intensity loss
this implies.

The crystal disk has been attached to a support plate
with our (002) planes vertical.

4.1.2. The Detector

Instead of using the low efficiency, thin BF3 counter
that was used in the Section 3 spectrum measurement,
it will be helpful to use a high efficiency (about 90%)
counter with 3

2He gas. This is similar in operation to
the BF3 counter, but it contains isotopic 3

2He gas at
high pressure, about 40 atmospheres. 3

2He is the very
rare and expensive isotope of elemental helium. As with
boron, 3

2He also exhibits a 1/v absorption cross section
for neutrons. The same counting circuit will be used, but
different counter voltage and amplifier gain setting will
be needed—these conditions will be posted locally.

4.1.3. Crystal Diffraction Measurements

a) Set the crystal orientation so that the (002) planes
have θB = 20◦ as closely as you can read the
vernier. Leave the chopper motor off and put the
chopper slot in the open position.

b) Open the neutron beam shutter so that a steady
neutron beam falls on the crystal.

c) Without disturbing the crystal orientation, move
the counter in angle position around 2θ = 40◦—
there is a crude angle scale on the table and a pa-
per vernier scale on the counter box. With Bragg
diffraction occurring at the crystal, we expect a lo-
calized intensity peak at about 40◦ scattering angle.
Measure the intensity with short time counting in
the electronic scaler at different positions of the de-
tector using steps of 0.25◦. Plot this immediately,
and determine the center position.

d) Set the chopper wheel in motion and stabilize at
the 240 Hz burst rate as before.

e) TIME SAVING HINT: Read Appendix B
and do transmission cross-section measure-
ments as part of the next step

f) Collect data in the MCS giving the flight time spec-
trum of the neutrons which are diffracted from the
(002) planes in the crystal. There should now be
a sharp peak at the flight times of the selected
monochromatic neutrons. You may also see a lower
intensity peak characteristic of λ/2 in second order
diffraction from the same planes. Collect enough
MCS data for print-out. If you see second order
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peaks in the MCS display, collect enough data to
determine their flight time as well as for the first
order.

g) Repeat for other selected θB values: 30◦, 25◦,
20◦,and 15◦. In setting other θB positions, it is
worthwhile to redetermine the counter position as
in 4(c) above. An off-center detector will produce
an error in the measured speed relative to that ex-
pected from the Bragg angle of the crystal. You
expect the scattering angle to be close to 2θB in
each case. Remember that the θB value read on
the more accurate goniometer is the primary an-
gle quantity and the counter position is not of use
in the later analysis. You want only to have the
counter in the central part of the diffracted beam.
Once you have determined this central part for each
angle and measured the spectrum at that angle,
you should also take a second spectrum through
the boron absorber (pyrex beaker-bottom) for each
angle. You will use these data for checking the 1/v
dependence of the cross-section for boron in Section
4.

h) You cannot safely access the containment area to
measure the flight path distance from the chopper
wheel to the counter center; it is different than in
Section 3. Use the following values:

• from the chopper to the crystal is 33.63±0.06
inches

• The distance from the crystal to the detector
is 20.00± 0.06 inches.

4.2. Analysis of Crystal Data

Graph the time spectrum data obtained at the various
θB selections—only the peaks plus their nearby back-
ground are of interest here, including any small λ/2 ones.
Notice that the channel widths of these are essentially the
same as your resolution width determined in Section 3.
Establish the centers of these peaks (use the steep sides
of the peak in this), and correct for the neutron time
origin C0 determined in (h) above.

Calculate the wavelength and corresponding neutron
speed (with significant figures consistent with the mea-
surement precision) for the various monochromatic beam
observations. Tabulate your data and graph v vs. 1/λ
with scales including the origin. According to the
De Broglie relation, your data points should fall on a
straight line with slope h/m which passes through the
origin. On your graph, draw the expected line using ac-
cepted values for h and m. This is an ideal case for
applying a least-squares treatment of the line fitting (an-
chor the fitted line at v = 0 = 1/λ since the De Broglie
Law requires this).

Analyze the possible contributing errors that enter into
your observations and establish the uncertainty in the

slope of your linear fit. Is this consistent with the differ-
ence between your result and that expected from estab-
lished constants? Typical runs show agreement to 1.0%
or so.

Analyze the 2θ scans that you made in establishing
the centered detector position in the Bragg reflection.
Considering the ray geometry falling on the crystal and
the angular width of the detector opening, this can tell
you something about the perfection of the copper crystal.

5. Part III: Additional Crystal Diffraction
Observations and Uses of Crystal Monochromated

Neutrons

There are a number of other experiments that you
can perform with the simple one-axis spectrometer (more
elaborate, sophisticated spectrometers sometimes involve
three axes of scattering in research studies). You will
have time in the scheduling to do at least one of the fol-
lowing. The monochromatic diffracted beams from the
copper crystal are of low intensity (unlike the hot, direct
white beam), and are safe to experiment with.

5.1. Transmission of Slow Neutrons Through
Materials

Most materials are relatively transparent to slow neu-
trons. This arises because neutrons carry no Coulom-
bic charge (experiments have shown this to be less than
10−22 electron charges!), and thus they don’t interact
with the charge distribution in atoms by means of the
long-range Coulombic interaction. They do interact with
the nuclei of atoms through the short-range nuclear force
interaction, and this is conveniently quantified by a nu-
clear scattering cross section (σS) and a nuclear absorp-
tion cross section (σA). Scattering cross sections do not
vary very much from nucleus to nucleus and have values
of a few barns (10−24 cm2). On the other hand, capture
or absorption cross sections vary widely depending upon
the distribution of nuclear energy levels and thus nuclear
resonance effects may be encountered. In illustration of
this, we may note that the absorption cross section of
carbon for thermal neutrons is only about 0.0034 barns,
whereas for some exotic rare-earth nuclei this becomes
as large as several million barns. Absorption cross sec-
tions invariably are sensitive to neutron energy (the 1/v
law mentioned earlier is a mild example of this) and res-
onance behavior is not uncommon.

You can study some of these cross sections by using the
monochromatic, Bragg diffracted beam from the copper
crystal and establishing the transmission (T ) of a piece
of material for this beam, as illustrated in Figure 11.

By definition,

T =
I (intensity passed through the sample)

I0 (intensity incident on the sample)
. (5.1)
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FIG. 11: Plan view of the experimental setup for
measuring the attenuation of monoenergetic neutrons in

a sample.

This can be shown to be

T =
I

I0
= exp

[
−
∑

i

MiσiT

]
(5.2)

with the index i symbolizing different nuclear species in
a composite sample, σiT the transmission cross section
(the sum of both σS and σA ) per nucleus of the i-th
species, and

M = areal density of nuclei

= number of nuclei/cm2 sample

= volume density of nuclei · sample thickness.

Plate samples of Fe, Al, Cd, and boron-containing
Pyrex glass are available for transmission cross section

study. For Fe and Al, the transmission is dominated by
the scattering process (hence it is relatively insensitive to
neutron energy), whereas for Cd and B, absorption dom-
inates with significant dependence upon neutron energy.
You will want generally to spend longer periods collecting
intensity data through the sample than without...see Ap-
pendix A notes on transmission measurements. Study all
samples at fixed wavelength corresponding to θB = 20◦

and, as well, the boron sample at several wavelengths
(energies).

The intensities to be used in obtaining T are best es-
tablished from the MCS flight time spectral print-out. By
summing the intensity in all channels over the monochro-
matic peak (corrected for background of course), you ob-
tain the integrated intensity in the Bragg reflection. Nor-
malize these to a common data-collection time interval
in getting T . With the Pyrex plate, the strong absorp-
tion cross section of B dominates, and you can establish
the 1/v law for this by measuring the transmission over a
range of neutron velocities. Compare the established val-
ues for the cross sections with what you determine from
experiment. Perhaps you have something else to place in
the neutron beam whose transparency to neutrons you
would like to assess. For instance, a thin plate of plastic
(containing lots of hydrogen) will attenuate the neutron
beam about as much as the thick iron plate!
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APPENDIX A: TRANSMISSION
CROSS-SECTION MEASUREMENT

As illustrated schematically in Figure 12, one mea-
sures the diminution in the beam intensity caused by
the insertion of a given absorber between the beam and
the detector. The data consist of the total numbers of
neutrons detected per unit time, N0 and N , integrated
over the time-of flight spectrum, with correction for back-
ground (baseline), and with and without the sample in
the monochromatic neutron beam. One then calculates
the transmission T and finally the effective cross sectional
area s of the scattering-absorption center according to the
relation

T =
I

I0
=

N

N0
= e−Mσ (A1)

Question (1): What is the uncertainty ∆σ in the σ
value?

Answer: From the theory of propagating errors we
have the equation

(
∆T

T

)2

=

(
∆N

N

)2

+

(
∆N0

N0

)2

, (A2)
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FIG. 12: Schematic diagram of an attenuation
measurement.

i.e. the fractional error in T is the square root of the sum
of the squares of the fractional errors in the the inten-
sity values. Since ∆N =

√
N for a statistically random

collection of N events, it follows that

∆T

T
= −M∆σ =

(
1

N
+

1

N0

)1/2

. (A3)

Question (2): If we want to spend a total collection
time t0 distributed between sample collection time ts and
incident beam collection time tB , what is the optimum
distribution of collection time so as to minimize ∆T and
∆σ?

Answer: N0 = αtB and N = Tαts , where α is the
collection rate of incident beam intensity and ts = t0−tB
. It follows that

∆T

T
=

(
1

Tαts
+

1

αtB

)1/2

. (A4)

For minimization of ∆T , we want

d(∆T )

dtB
= 0. (A5)

This is satisfied when

1

T (t0 − tB)2
− 1

t2B
= 0 (A6)

(check this out) which, when solved for tB , yields the
expressions

tB = t0

√
T − T

1− T and ts = t0 − tB = t0
1

1 +
√
T

(A7)
and the ratio of collection times

ts/tB = T−1/2. (A8)

Thus for high T (i.e. T ≈ 1) we want equal collec-
tion times. On the other hand, for small T , we want to
distribute the time so that more time is spent collecting
neutrons through the sample. For example, if T = 0.1
for a sample, you will attain highest precision in the cal-
culated value for σ if the sample collection time is about
three times longer than the open beam collection time.
Of course, increasing the total collection time t0 also im-
proves the precision. In estimating how you should best
distribute the collection time, you can get a preliminary
estimate of T for a sample by looking at the rate of in-
tensity build-up on the MCS scope and comparing this
with that obtained with the open beam.

A good sequence procedure for studying the different
samples at fixed θB = 20◦ position is: (1) Open beam, (2)
Al, (3) Fe, (4) B, (5) Cd, and (6) Open beam. Hopefully
your start-end “Open beam” results are the same and
you can average them. Time all collection runs so that
they can be normalized.

In placing samples along the beam line, remember that
we do not want to count any of the scattered intensity.
This means that we want scattering samples to be well
away from the detector so that the detector solid angle
as seen from the sample is small compared to total 4π
steradians.
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FIG. 13: Plot of the ratio of collection times against
transmission.
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FIG. 14: Schematic of geometry necessary to calculate
the neutron flux and neutron density.

APPENDIX B: CALCULATION OF NEUTRON
FLUX AND NEUTRON DENSITY IN REACTOR

The neutron density n (neutrons cm−3 irrespective of
speed or direction of travel) and the neutron flux φ0 = nv
(neutrons cm−2sec) inside the reactor may be calculated
from your intensity measurement obtained in Section 3.4
item 7. We can model this problem as being similar to
that found in many textbooks of statistical mechanics or
thermodynamics (in particular see Sections 7.9–7.12 in
Reference [6]).

Consider a gas of density n in thermal equilibrium in-
side a container surrounded by vacuum. A small hole
is present in the container wall so that gas atoms of all
speeds traveling in all directions escape out through the
hole.

An additional collimating hole is placed at a large dis-
tance L from the container wall along a line perpendic-
ular to the container wall so that a collimated beam of
atoms of all speeds will pass through the collimating hole
and be detected by a detector placed behind the hole.
Thus following Reif eq. 7.11.9, the collimated current
I (atoms/second) passing through the collimating hole
would be expressed as

I = A

∫

vx>0

v3f(v)dv

∫ θ0

0

sin θ cos θdθ

∫ 2π

0

dφ

= πAθ20

∫ ∞

0

v3f(v)dv

=
1

4
Aθ20 nv̄

= A
a

4πL2
nv̄, (B1)

where as in Reif, v̄ is the average speed of the Maxwell-
Boltzmann speed distribution. The average speed is re-
lated to our most probable speed v0 (see Equation 3.1)
as

v̄ =
2√
π
v0 (B2)

which you have evaluated in the Maxwell-Boltzmann
spectrum analysis.

For our neutron case, neutrons are delivered to a low
efficiency detector (e = 0.010 averaged over the spec-
trum) behind the chopper area (a = 2.4 mm2) by a long,
converging, tapered collimator tube. The dimensions of
this collimator tube are such that each point of the exit
area sees a source area of 2.0 cm2 on the front surface of
the oversize insert tube extending through the D2O re-
flector to the center line below the reactor volume. The
distance from the exit area (the chopper slit) to the front
surface source is 310 cm. Using these numerical param-
eters and your measured intensity you can calculate nv̄
(commonly called the reactor flux) and n. It is to be
recognized that these values are approximate (within a
small factor of order unity) because our assembly does
not match the features of the model exactly. We do not
have a sharp containment wall for the neutrons and the
void volume of the insert tube can perturb the local flux.
This flux value would scale with the reactor operating
power level.

APPENDIX C: EQUIPMENT LIST

Manufacturer Description URL

MIT Research Reactor

LND He-3 Detector lnd.com

LND BF3 Detector lnd.com

Canberra Proportional Counter preamp canberra.com

Canberra Amplifier canberra.com

Ortec Multi-Channel Scaler ortec-online.com

APPENDIX D: TIME OF FLIGHT DATA
ANALYSIS

The following analysis was created and provided by
Prof. David Litster.

1. Analysis

This is a brief discussion of how to analyze the TOF
data for thermal neutrons.

The flux of neutrons with speeds between v and v+dv
will be proportional to

j(v)dv = n

√
2

π

(
v

v0

)3

e−(v/v0)
2

dv (D1)

where

v0 =
√

2kBT/m ≈ 2300 ms−1. (D2)

If the detector efficiency is proportional to 1/v we might
expect a neutron counting rate for neutrons with speeds
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between v and v + dv to be proportional to

(
v

v0

)2

e−(v/v0)
2

dv (D3)

However, the chopper passes neutrons for a finite pe-
riod of time every time it opens. Thus the time of flight
of the neutrons from the chopper to the detector varies
and the counts in each channel of the MCS represent neu-
trons that have a range of speeds. When the detector is
close to the chopper, that does not matter much as neu-
trons of all speeds present in the beam will arrive at the
detector at the same time (on the scale of the time res-
olution for the chopper) and the counts in the MCS will
just measure the transmission of the chopper as a func-
tion of time. That function will be the convolution of two
slits each 1.0 mm wide and will therefore be triangular
in shape. The chopper wheel spins at 1800 rpm and the
slits are at a radius of 54.5 mm. From this, it is easy to
calculate that the triangular transmission function of the
chopper should have a half-width at the base of 95 µs.
This was verified by fitting the TOF spectrum obtained
when the BF3 detector was 3.25 in from the chopper. I
will use the variable tH to represent the 95 µs half-width
of the chopper transmission. I will also use ` to be the
distance from the chopper to the BF3 detector and con-
sider the neutrons counted into channel m of the MCS.
The sweep of the MCS is triggered by a light pulse some
time before the chopper opens. I assume that the MCS is
counting into channel n0 when the chopper transmission
is maximum.

Now let’s consider channel m of the MCS. It will rep-
resent a time tm = tD(m− n0) with respect to the time
the chopper was maximally open. Note that tm may be
negative. If tm ≤ −tH no neutrons will have had time

to reach the detector. For tm > −tH , there are three
time regions to consider when calculating the neutron
speeds that will be counted into channel m. They are
−tH < tm ≤ 0, 0 < tm ≤ tH and tm > tH .

The easiest way to do the calculations is to consider
the travel time t of the neutrons from the chopper to the
detector. When integrating over the range of speeds for
neutrons that will be counted into channel m, it will be
necessary to include a factor that represents the trian-
gular transmission function of the chopper. It will also
be useful to introduce a new variable y = v/v0 = `/(vot)
which means t = `/(v0y) and dt = −(`/v0)(1/y2)dy.

What we want to integrate over these three time re-
gions is the number of neutrons whose travel time lies
between t and t + dt. As the number whose speed is

between v and v + dv is proportional to y2e−y
2

dv and
t = `/v, the number whose travel time is between t and

t+ dt will be proportional to y4e−y
2

dt.
Some useful integrals will be:

∫ y2

y1

e−y
2

dy =

√
π

2
[Φ(y2)− Φ(y1)]

where Φ(x) =
2√
π

∫ x

0

e−t
2

dt, (D4)

∫ y2

y1

ye−y
2

dy = −1

2

∫ y22

y21

e−zdz =
1

2

(
e−y

2
1 − e−y22

)
,

∫
y2e−y

2

dy = −1

2
ye−y

2

+
1

2

∫
e−y

2

dy .

The calculations are given below. The neutron count
rate will be proportional to R(m) and the factor 1/tH is
included to make the result dimensionless.

−tH < tm ≤ 0

R(m) =
1

tH

∫ tH+tm

0

(
tH + tm − t

tH

)
y(t)4e−y(t)

2

dt

=
`

v0tH

∫ ∞

y1

[(
1 +

tm
tH

)
y2 − `

v0tH
y

]
e−y

2

dy where y1 =
`

v0(tm + tH)

=
1

2

`

v0tH

(
1 +

tm
tH

)(√
π

2
[1− Φ(y1)] + y1e

−y21
)
− 1

2

(
`

v0tH

)2

e−y
2
1

0 < tm ≤ tH
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R(m) =
1

tH

∫ tm

0

(
tH − tm + t

tH

)
y(t)4e−y(t)

2

dt+
1

tH

∫ tH+tm

tm

(
tH + tm − t

tH

)
y(t)4e−y(t)

2

dt

=
`

v0tH

∫ ym

y1

[(
1 +

tm
tH

)
y2 − `

v0tH
y

]
e−y

2

dy +
`

v0tH

∫ ∞

ym

[(
1− tm

tH

)
y2 +

`

v0tH
y

]
e−y

2

dy

=
1

2

`

v0tH

{√
π

2
[1− Φ(y1)] + y1e

−y21 − tm
tH

[√
π

2
[1 + Φ(y1)− 2Φ(ym)] + 2yme

−y2m − y1e−y
2
1

]}

+
1

2

(
`

v0tH

)2 [
e−y

2
1 − 2e−y

2
m

]
where ym =

`

v0tm
.

tm > tH

R(m) =
1

tH

∫ tm

tm−tH

(
tH − tm + t

tH

)
y(t)4e−y(t)

2

dt+
1

tH

∫ tH+tm

tm

(
tH + tm − t

tH

)
y(t)4e−y(t)

2

dt

=
`

v0tH

∫ ym

y1

[(
1 +

tm
tH

)
y2 − `

v0tH
y

]
e−y

2

dy +
`

v0tH

∫ y2

ym

[(
1− tm

tH

)
y2 +

`

v0tH
y

]
e−y

2

dy

=
1

2

`

v0tH

{
Γ( 3

2 , y21)− Γ( 3
2 , y22) +

tm
tH

[Γ( 3
2 , y21) + Γ( 3

2 , y22)− 2Γ( 3
2 , y2m)]

}

+
1

2

(
`

v0tH

)2 [
e−y

2
1 + e−y

2
2 − 2e−y

2
m

]
where y2 =

`

v0(tm − tH)
.

Thus R(m) has exponentials along with error func-
tions. These should not be too hard to evaluate
numerically for fitting purposes. Most compiler li-
braries provide them. The Gnu Scientific Library
(http://www.gnu.org/software/gsl/) has routines for
both of these functions. The exponential function goes
rapidly to zero for large x and can lead to floating point
underflows. I used code provided in the GSL library to
deal with that.

When writing the fitting code, it is easy to measure
time in MCS channel number units and use the dwell
time to convert to µs after the fit. Section 2 list the model
function code that I used. It is written in C and there are
some global variables: NO is n0, X is the channel number
so that m = X - NO is tm, HW is tH , PK - NO is `/v0, all
expressed in channel number units. The quantities NO,
PK, HW, BG and SF are all the parameters that may be
varied in the fit. Once HW and NO have been found from
fitting data taken with the detector close to the chopper,
they are then held fixed. (The value of HW found from the
fit should, of course, agree with the calculated value from
the chopper and slit dimensions and chopper rotation
speed.)

My code was written for a nice fitting/plotting package
called C-Plot, available from Certified Scientific Software
(http://www.certif.com/). You could use it as pseu-
docode to guide code you write for Matlab or some other
package.

Necessity:

How necessary is this correction for the finite opening
time of the chopper? As you might expect, it depends on
how tH compares to the time for the neutrons to travel
to the detector. The graph below shows some calculated
fits with tH = 25 channels (close to the 95 µs calculated
value for the chopper) and tH = 1 channel, essentially
no correction for chopper open time. I used n0 = 100
channels, which is close to correct for the apparatus. The
plots are for thermal spectra with `/v0 = 10 channels and
`/v0 = 100 channels; the latter is about what one expects
for tD = 4µs and thermal neutrons when ` = 1m.

Necessity:
How necessary is this correction for the finite opening time of the chopper? As you might
expect, it depends on how tH compares to the time for the neutrons to travel to the detector.
The graph below shows some calculated fits with tH = 25 channels (close to the 95µs
calculated value for the chopper) and tH = 1 channel, essentially no correction for chopper
open time. I used n0 = 100 channels, which is close to correct for the apparatus. The plots
are for thermal spectra with !/v0 = 10 channels and !/v0 = 100 channels; the latter is about
what one expects for tD = 4 µs and thermal neutrons when ! = 1 m.

The correction is not important for thermal neutrons at ! = 1 m, but it matters close to the
chopper and for the epithermal peak seen in the spectrum at ! = 1 m.

The fast peak above has a speed about 2.5×104 ms−1, obtained from the peak position shift
of about 45µs as the detector was moved 1.0 m. As the plot shows, a Maxwell-Boltzmann
distribution with this v0 would rise and fall so rapidly that the fit function is essentially
the triangular transmission of the chopper. (The same must be true for whatever is the
actual speed distribution of the fast neutrons.) This v0 would correspond to a thermal
distribution for T ≈ 3 × 104 K. The epithermal neutrons are moving so fast and their their
speed distribution is sufficiently narrow that even after they have travelled 1m we cannot
determine it with a chopper whose time resolution is given by tH # 100 µs. However it is
very unlikely to be thermal.

Fits of the thermal functions to my data are shown on the next page; the fits and plots were
made with C-Plot.

8.13 Neutron Physics 4 Litster, November 19, 2009

The correction is not important for thermal neutrons
at ` = 1 m, but it matters close to the chopper and for
the epithermal peak seen in the spectrum at ` = 1 m.
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The fast peak above has a speed about 2.5×104 ms−1,
obtained from the peak position shift of about 45 µs as
the detector was moved 1.0 m. As the plot shows, a
Maxwell-Boltzmann distribution with this v0 would rise
and fall so rapidly that the fit function is essentially the
triangular transmission of the chopper. (The same must
be true for whatever is the actual speed distribution of
the fast neutrons.) This v0 would correspond to a ther-
mal distribution for T ≈ 3× 104K. The epithermal neu-
trons are moving so fast and their speed distribution is
sufficiently narrow that even after they have travelled 1
m we cannot determine it with a chopper whose time
resolution is given by tH ' 100µs. However it is very
unlikely to be thermal.

Fits of the thermal functions to my data are shown on
the next page; the fits and plots were made with C-Plot.

After 1m, the scan appears to separate into two peaks. Each was fit individually to a
thermal spectrum. One seems to have v0 about 12 times the other.

8.13 Neutron Physics 5 Litster, November 19, 2009

After 1 m, the scan appears to separate into two peaks. Each was fit individually to a
thermal spectrum. One seems to have v0 about 12 times the other.

8.13 Neutron Physics 5 Litster, November 19, 2009

After 1 m, the scan appears to separate into two peaks.
Each was fit individually to a thermal spectrum. One
seems to have v0 about 12 times the other.

Finally, the fit obtained to the fast peak portion of the
scan was subtracted (with zero background) from the to-
tal data. This should, in principle, leave only the back-
ground and the neutron counts from the slow (thermal)
neutrons. The data that resulted are shown in the plot
below along with the fit to all of the data.

Finally, the fit obtained to the fast peak portion of the scan was subtracted (with zero
background) from the total data. This should, in principle, leave only the background and
the neutron counts from the slow (thermal) neutrons. The data that resulted are shown in
the plot below along with the fit to all of the data.

The result agrees with that obtained only by fitting data in channels above number 150. The
value of v0 obtained from the fit is about 2 000 m/s. The value obtained using the peak shift
from Z = 3.25 to Z = 42.62 (∆! = 1.00 m) would be 2 100 m/s. The fast peak shift suggests
a speed about 13 000 m/s, while the average speed obtained from the fit of the Z = 3.25
data to a thermal spectrum (unreliable, in my view) would be v0 ! 20 000m/s.

This suggests to me that 93 is too low for the offset channel number and a better value
would be somewhere from 95 to 100. If the angle the chopper wheel has to rotate after
the light pulse until the first slit is fully open were to be measured, then the offset channel
number n0 could be calculated.

8.13 Neutron Physics 6 Litster, November 19, 2009

The result agrees with that otained only by fitting data
in channels above number 150. The value of v0 obtained
from the fit is about 2000 m/s. The value obtained using
the peak shift from Z = 3.25 to Z = 42.62 (∆` = 1.00
m) would be 2100 m/s. The fast peak shift suggests a
speed about 13000 m/s, while the average speed obtained
from the fit of the Z = 3.25 data to a thermal spectrum
(unreliable, in my view) would be v0 ' 20000m/s.

This suggests to me that 93 is too low for the offset
channel number and a better value would be somewhere
from 95 to 100. If the angle the chopper wheel has to
rotate after the light pulse until the first slit is fully open
were to be measured, then the offset channel number n0
could be calculated.

2. C-Plot Code

Below is the C-Plot model function code used to per-
form the analysis described in Section 1.

#define RP 0.88622693 /* \sqrt{\pi}/2 */

double model(deriv_flag)
int deriv_flag;
{
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double m, p, yfit;
double y1, y2, ym, r;
double ey1, ey2, eym; /* exponentials */
double py1, py2, pym; /* error functions */

m = X - NO;
p = PK - NO;
if (p < 1.0) p = 1.0;
if (m <= (-HW)) {
r = 0;

}
else if (m <= 0) {

y1 = p/(m+HW);
py1 = gs1_sf_erf(y1);
status = gsl_sf_exp_e(y1*y1, &result);
if (status) {

ey1 = 0.0;
if (status != GSL_EUNDRFLW)
printf("exp(-y1*y1) m=%g %s\n", m, gsl_strerror(status));

}
else ey1 = result.val;
r = (p/HW)*( RP*(1.0 - py1) + y1*ey1
+ (m/HW)*( RP*(1.0 - py1) + y1*ey1 ) - (p/HW)*ey1 );

}
else if (m <= HW) {

y1 = p/(m+HW);
py1 = gsl_sf_erf(y1);
status = gsl_sf_exp_e(y1*y1, &result);
if (status) {

ey1 = 0.0;
if (status != GSL_EUNDRFLW)
printf("exp(-y1*y1) m=%g %s\n", m, gsl_strerror(status));

}
ym = p/m;
pym = gsl_sf_erf(ym);
status = gsl_sf_exp_e(ym*ym, &result);
if (status) {

eym = 0.0;
if (status != GSL_EUNDRFLW)
printf("exp(-ym*ym) m=%g %s\n", m, gsl_strerror(status));

}
else eym = result.val;
r = (p/HW)*( RP*(1.0 - py1) + y1*ey1
+ (m/HW)*( RP*(2.0*pym - py1 - 1.0) - 2.0*ym*eym + y1*ey1 )
+ (p/HW)*(2.0*eym - ey1) );

}
else { /* m > HW */

y1 = p/(m+HW);
py1 = gsl_sf_erf(y1);
status = gsl_sf_exp_e(y1*y1, &result);
if (status) {

ey1 = 0.0;
if (status != GSL_EUNDRFLW)
printf("exp(-y1*y1) m=%g %s\n", m, gsl_strerror(status));

}
else ey1 = result.val;
ym = p/m;
pym = gsl_sf_erf(ym);
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status = gsl_sf_exp_e(ym*ym, &result);
if (status) {

eym = 0.0;
if (status != GSL_EUNDRFLW)
printf("exp(-ym*ym) m=%g %s\n", m, gsl_strerror(status));

}
else eym = result.val;
y2 = p/(m-HW);
py2 = gsl_sf_erf(y2);
status = gsl_sf_exp_e(y2*y2, &result);
if (status) {

ey2 = 0.0;
if (status != GSL_EUNDRFLW)
printf("exp(-y2*y2) m=%g %s\n", m, gsl_strerror(status));

}
else ey2 = result.val;
r = (p/HW)*( RP*((py2 - py1) + y1*ey1 - y2*ey2
+ (m/HW)*( RP*(2.0*pym - py1 - py2)) - 2.0*ym*eym + y1*ey1 + y2*ey2 )
+ (p/HW)*(2.0*eym - ey1 - ey2) );

}
yfit = BG +SF * r;
if (deriv_flag) {

if (fBG) dBG = 1;
if (fSF) dSF = r;

}
return(yfit);

}
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FIG. 15: Total absorption cross-sections for neutrons as a function of energy for B, Cd, Fe, and Al. Data from
atom.kaeri.re.kr/ton. The percentages next to the Boron isotopes indicate their relative natural abundances.
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Johnson Noise and Shot Noise

MIT Department of Physics
(Dated: September 5, 2011)

In electronic measurements, one observes “signals,” which must be distinctly above the “noise.”
Noise induced from outside sources may be reduced by shielding and proper “grounding.” Less noise
means greater sensitivity with signal/noise as the figure of merit. However, there exist fundamental
sources of noise which no clever circuit can avoid. The intrinsic noise is a result of the thermal jitter
of the charge carriers and the quantization of charge. The purpose of this experiment is to measure
these two limiting electrical noises. From the measurements, values of the Boltzmann constant, k,
and the charge of the electron, e, will be derived.

1. PREPARATORY QUESTIONS

1. Define the following terms: Johnson noise, shot
noise, RMS voltage, thermal equilibrium, temper-
ature, Kelvin and centigrade temperature scales,
entropy, dB.

2. What is the physical basis of the Nyquist theory
[? ] of Johnson noise? Give an estimate for the
RMS voltage acros a 50kΩ resistor at 100◦C with
a frequency range of 100 to 10,000Hz.

3. What is the mean square of the fluctuating compo-
nent of the current in a photodiode when its average
current is Iav ?

4. Your measurement of the noise at a frequency f±δf
is inaccurate at the following level: N = Nf ±2Nf .
How many additional measurements are needed to
get a result accurate to 5%.

The goals of the present experiment are:

1. To measure the properties of Johnson noise in a
variety of conductors and over a substantial range
of temperature and to compare the results with the
Nyquist theory.

2. To establish the relation between the Kelvin and
centigrade temperature scales.

3. To determine from the data, values for the Boltz-
mann constant, k, and the centigrade temperature
of absolute zero.

2. INTRODUCTION

2.1. Microscopic Quantization

“Thermal physics connects the world of
everyday objects, of astronomical objects,
and of chemical and biological processes with
the world of molecular, atomic, and electronic
systems. It unites the two parts of our world,
the microscopic and the macroscopic.”[? ]

By the end of the 19th century, the accumulated ev-
idence from chemistry, crystallography, and the kinetic
theory of gases left little doubt about the validity of the
atomic theory of matter, though a few reputable scien-
tists still argued strongly against it on the grounds that
there was no “direct” evidence of the reality of atoms.
In fact there was no precise measurement yet available
of the quantitative relation between atoms and the ob-
jects of direct scientific experience such as weights, meter
sticks, clocks, and ammeters.

To illustrate the dilemma faced by physicists in 1900,
consider the highly successful kinetic theory of gases
based on the atomic hypothesis and the principles of
statistical mechanics from which one can derive the
equipartition theorem. The theory showed that the well-
measured gas constant Rg in the equation of state of a
mole of a gas at low density,

PV = RgT (2.1)

is related to the number of degrees of freedom of the
system, 3N , by the equation

Rg =
k(3N)

3
= kN (2.2)

where N is the number of molecules in one mole (Avo-
gadro’s number), and k is the Boltzmann constant de-
fined so that the mean energy per translational degree of
freedom of the molecules in a quantity of gas in thermal
equilibrium at absolute temperature T is kT/2. At the
turn of the century, nobody knew how to measure pre-
cisely either k or N . What was required was either some
delicate scheme in which the fundamental granularity of
atomic phenomena could be detected and precisely mea-
sured above the smoothness that results from the huge
number of atoms in even the tiniest directly observable
object, or a thermodynamic system with a measurable
analog of gas pressure and a countable number of degrees
of freedom.

The Millikan oil drop experiment of 1910 was a delicate
scheme by which the quantum of charge was accurately
measured. It compared the electrical and gravitational
forces on individual charged oil droplets so tiny that the
effect of a change in charge by one or a few elementary
charges could be directly seen and measured through a
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microscope. The result was a precise determination of
e which could be combined with the accurately known
values of various combinations of the atomic quantities
such as the Faraday (Ne), e/m , atomic weights, and the
gas constant (kN), to obtain precise values of N , k, and
other atomic quantities. Therefore, a current will not be
continuous in the mathematical sense, it should exhibit
a “noise” due to the granularity of charges.

Twenty years later Johnson discovered an analog of
gas pressure in an electrical system, namely, the mean
square “noise” voltage across a conductor due to ther-
mal agitation of the electrical modes of oscillation which
are coupled to the thermal environment by the charge
carriers. Nyquist showed how to relate that mean square
voltage to the countable number of degrees of freedom
of electrical oscillations in a transmission line. The only
atomic constant that occurs in Nyquist’s theoretical ex-
pression for the Johnson noise voltage is the Boltzmann
constant k. A measurement of Johnson noise therefore
yields directly an experimental determination of k.

In classical statistical mechanics, k/2 is the constant
of proportionality between the Kelvin temperature of a
system in thermal equilibrium and the average energy
per dynamical degree of freedom of the system. Its ul-
timate quantum physical significance emerged only with
the development of quantum statistics after 1920 [? ]. A
summary of the modern view is given below (see refer-
ence [? ], Kittel and Kroemer, for a lucid and complete
exposition).

2.2. Entropy and Temperature

A closed system of many particles exists in a number
of distinct quantum states consistent with conservation
constraints of the total energy of the system and the to-
tal number of particles. For a system with g accessible
states, the fundamental entropy σ is defined by

σ = ln g (2.3)

With the addition of heat, the number of states acces-
sible within the limits of energy conservation rises, and
the entropy increases. An exact enumeration of the quan-
tum states accessible to a system composed of many non-
interacting particles in a box and having some definite
energy can be derived from an analysis based on the so-
lutions of the Schrödinger equation (Ref. [? ], p 77). It
shows that for one mole of a gas at standard tempera-
ture and pressure (273K, 760 mm Hg) σ is of the order
of 1025. The corresponding value of g is of the order of

the huge number e10
25

!
Suppose that the total energy U of the system is in-

creased slightly by ∆U , perhaps by the addition of heat,
while the volume V and number of particles N are held
constant. With the increase in energy more quantum
states become accessible to the system so the entropy is
increased by ∆σ. The fundamental temperature is de-

fined by

1

τ
≡
(
∂σ

∂U

)

N,V

(2.4)

The units of τ are evidently the same as those of energy.
Since an increase in the energy of one mole of gas by
one joule causes a very large increment in σ, the magni-
tude of τ in common circumstances like room tempera-
ture must be much less than 1. In practical thermome-
try, the Kelvin temperature T is proportional to τ , but
its scale is set by defining the Kelvin temperature of the
triple point of water to be exactly 273.16 K. This puts
the ice point of water at 273.15 K and the boiling point
100 K higher at 373.15 K. The constant of proportional-
ity between fundamental and Kelvin temperatures is the
Boltzmann constant, i.e.

τ = kT (2.5)

where k = 1.38066× 10−23JK−1. By a quantum statis-
tical analysis, based on the Schrödinger equation, of N
particles in a box in thermal equilibrium at temperature
T , one can then show that the mean energy per transla-
tional degree of freedom of a free particle is τ/2 so the
total energy of the particles is 3

2Nτ = 3
2NkT (see [? ],

p. 72).

Given the quantum statistical definition of τ , the def-
inition of T in terms of τ and the triple point of water,
one could, in principle, compute k in terms of the atomic
constants such as e, me, and h if one could solve the
Schrödinger equation for water at its triple point in all
its terrible complexity. But that is a hopeless task, so
one must turn to empirical determinations of the pro-
portionality constant based on experiments that link the
macroscopic and microscopic aspects of the world.

A link between the microscopic and macroscopic was
reported by Johnson in 1928 [? ] in a paper paired
in the Physical Review with one by H. Nyquist [? ]
that provided a rigorous theoretical explanation based
on the principles of classical thermal physics. John-
son had demonstrated experimentally that the mean
square of the voltage across a conductor is pro-
portional to the resistance and absolute temper-
ature of the conductor and does not depend on
any other chemical or physical property of the
conductor. At first thought, one might expect that the
magnitude of Johnson noise must depend in some way
on the number and nature of the charge carriers. In fact
Nyquist’s theory involves neither e nor N . It yields a
result in agreement with Johnson noise observations and
a formula for the mean square of the noise voltage which
relates the value of the Boltzmann constant to quantities
that can be readily measured by electronic methods and
thermometry.
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3. NYQUIST’s THEORY OF JOHNSON NOISE

Two fundamental principles of thermal physics are
used:

1. The second law of thermodynamics, which implies
that between two bodies in thermal equilibrium at
the same temperature, in contact with one another
but isolated from outside influences, there can be
no net flow of heat;

2. The equipartition theorem of statistical mechanics
[? ], which can be stated as follows:

Whenever the Hamiltonian of a sys-
tem is homogeneous of degree 2 in a
canonical momentum component, the
thermal average kinetic energy associ-
ated with that momentum is kT/2, where
T is the Kelvin temperature and k is
Boltzmann’s constant. Further, if the
Hamiltonian is homogeneous of degree 2
in a position coordinate component, the
thermal average potential energy associ-
ated with that coordinate will also be
kT/2.

If the system includes the electromagnetic field,
then the Hamiltonian includes the term (E2 +
B2)/8π in which E and B are canonical variables
corresponding to the q and p of a harmonic oscil-
lator for which (with p and q in appropriate units)
the Hamiltonian, is (q2 + p2)/2.

Nyquist’s original presentation of his theory [? ] is mag-
nificent; please see the Junior Lab e-library for a copy.

Nyquist invoked the second law of thermodynamics to
replace the apparently intractable problem of adding up
the average thermal energies in the modes of the elec-
tromagnetic field around a conductor of arbitrary shape
and composition with an equivalent problem of adding
up the average thermal energies of the readily enumer-
ated modes of electrical oscillation of a transmission line
shorted at both ends. Each mode is a degree of freedom
of the dynamical system consisting of the electromagnetic
field constrained by the boundary conditions imposed by
the transmission line. According to the equipartition the-
orem, the average energy of each mode is kT , half electric
and half magnetic. The Nyquist formula for the differen-
tial contribution dV 2

j (j for Johnson) to the mean square
voltage across a resistor, R, in the frequency interval df
due to the fluctuating emfs corresponding to the energies
of the modes in that interval is

dV 2
j = 4RkTdf (3.1)

To measure this quantity, or rather its integral over the
frequency range of the pass band in the experiment, one
must connect the resistor to the measurement device by
means of cables that have a certain capacitance C. This

R

A

B

Differential
Amplifier

R

Vj

C Vj’

FIG. 1: Equivalent circuit of the thermal emf across a
conductor of resistance R connected to a measuring

device with cables having a capacitance C

shunts (short circuits) a portion of the signal, thereby re-
ducing its RMS voltage. The equivalent circuit is shown
in Figure 1. The differential contribution dV 2 to the sig-
nal presented to the input of the measuring device (in our
case the A–input of a low-noise differential preamplifier)
is a fluctuating voltage with a mean square value

dV 2 = 4RfkTdf (3.2)

where

Rf =
R

1 + (2πfCR)2
(3.3)

This equation results from AC circuit theory; see B8 in
Appendix B.

Attention was drawn earlier to an analogy between
the mean square of the Johnson noise voltage across a
conductor and the pressure of a gas on the walls of a
container. Both are proportional to kT and the num-
ber of degrees of freedom of the system. The big differ-
ence between the two situations is that the number of
translational degrees of freedom per mole of gas is the
“unknown” quantity 3N , while the number of oscillation
modes within a specified frequency interval in the trans-
mission line invoked by Nyquist in his theory is readily
calculated from the laws of classical electromagnetism.

Since the Boltzmann constant is related to the number
of accessible quantum states, one might well ask:

Where is Planck’s constant, h, which fixes the
actual number of accessible states?

The answer is that the Nyquist theorem in its original
form, like the classical Rayleigh-Jeans formula for the
spectral distribution of blackbody radiation, is valid only
in the range of frequencies where hf << kT , in other
words, at frequencies sufficiently low that the minimum
excitation energy of the oscillations is small compared to
kT . At 300K and 100 kHz, kT = 4 × 10−14 ergs (0.04
eV) and hf = 6×10−22 ergs. Thus at room temperature
kT is ∼ 108 times the minimum energy of an oscillation
mode with a frequency near 100 kHz. The exact quantum
expression for the mean energy ε of each oscillation mode,
noted by Nyquist in his paper, is

ε =
hf

ehf/kT − 1
(3.4)

which reduces to ε = kT for hf << kT over the range of
frequencies and temperatures encountered in this exper-
iment. An example of where this simplification does not
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hold true is in the measurement of the cosmic microwave
background. In these measurements, a radio telescope is
operated at liquid helium temperatures for measurement
of the ∼ 2.7K cosmic background radiation. The peak of
this black body spectrum is around 1011 Hz and therefore
hf is not much less than kT .

4. EXPERIMENT

In the present experiment you will actually measure
an amplified version of a portion of the Johnson noise
power spectrum. The portion is defined by the “pass
band” of the measurement chain which is determined by
a combination of the gain characteristics of the ampli-
fier and the frequency transmission characteristics of the
low-pass/high-pass filters that are included in the mea-
surement chain. The filters provide an adjustable and
sharp control of the pass band. The combined effects
of amplification and filtration on any given input signal
can be described by a function of frequency called the
effective gain and defined by

g(f) =
V0(f)

Vi(f)
(4.1)

where the right side is the ratio of the RMS voltage V0
out of the band-pass filter to the RMS voltage Vi of a
pure sinusoidal signal of frequency f fed into the ampli-
fier. A critical task in the present experiment is
to measure the effective gain as a function of fre-
quency of the apparatus used to measure Johnson
noise.

When the input of the measurement chain is connected
across the resistor, R, under study, the contribution dV 2

to the total mean square voltage out of the band-pass
filter in a differential frequency interval is

dV 2
meas = [g(f)]2 dV 2 (4.2)

We obtain an expression for the measured total mean
square voltage by integrating Equation 4.2 over the range
of frequencies of the pass band. Thus

V 2 = 4RkTG (4.3)

where the quantity G is the gain integrated over the
band-pass region and is given by

G ≡
∫ ∞

0

[g(f)]2

1 + (2πfCR)2
df (4.4)

The rationale behind this integration is that over any
given time interval t, the meandering function of time
that is the instantaneous noise voltage across the resis-
tor can be represented as a Fourier series consisting of a
sum of sinusoids with discrete frequencies n/2t, n=1, 2,
3 ...., each with a mean square amplitude equal to the
value specified by the equipartition theorem. When the
Fourier series is squared, the cross terms are products

of sinusoids with different frequencies, and their aver-
age values are zero. Thus the expectation value of the
squared voltage is the sum of the expectation values of
the squared amplitudes, and in the limit of closely spaced
frequencies as t→∞, the sum can be replaced by an in-
tegral.

Given the linear dependence of V 2 on T in Eq. 4.3, it
is evident that one can use the Johnson noise in a resis-
tor as a thermometer to measure absolute temperatures.
A temperature scale must be calibrated against two phe-
nomena that occur at definite and convenient tempera-
tures such as the boiling and melting points of water,
which fix the centigrade scale at 100◦ C and 0◦C, re-
spectively. In the present experiment you will take the
centigrade calibrations of the laboratory thermometers
for granted, and determine the centigrade temperature
of absolute zero as the zero-noise intercept on the nega-
tive temperature axis.

5. PROCEDURE OVERVIEW

The experiment consists of the following parts:

1. Calibration of the measurement chain and measure-
ment of g(f);

2. Measurement of V 2 = V 2
R − V 2

S , where VR = RMS
voltage at the output of the band-pass filter with
the resistor in place; and VS = RMS voltage with
the resistor shorted); for various resistors and tem-
peratures;

3. Determination of the Boltzmann constant from the
data;

4. Determination of the centigrade temperature of ab-
solute zero.

5.1. Suggested Progress Check for end of 2nd
Session

Plot the gain curve of your signal chain versus fre-
quency and perform a back of the envelope integration
to obtain a value of G. You should also have a few mea-
surements at at least one resistor value: What is your
value for k?

6. Experimental Apparatus

Figure 3 depicts how you will calibrate your experi-
mental apparatus. Figure 2 is a schematic diagram of
the apparatus showing the resistor R mounted on the
terminals of the aluminum box, shielded from electri-
cal interference by an inverted metal beaker, and con-
nected through switch SW2 to the measurement chain
or the ohmmeter. Switch SW1 shorts R. The measure-
ment chain consists of a low-noise differential amplifier, a
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band-pass filter, and a digitizing oscilloscope. Sinusoidal
calibration signals are provided by a function generator.

The noise you will measure is very small, typically on
the order of microvolts. To minimize the problem of elec-
trical interference in the measurement of the low-level
noise signals it is essential that all cables be as short as
possible. The two cables that connect the resistor to the
‘A’ and ‘B’ input connectors of the differential amplifier
should be tightly twisted, as shown, to reduce the flux
linkage of stray AC magnetic fields.

The cathode ray tube display in the digital os-
cilloscope emits a variable magnetic field from its
beam-control coil which may have a devastating
effect on your measurements unless you keep it
far away (≥ 5 feet) from the noise source. Take
special care to avoid this problem when you arrange the
components of the measurement chain on the bench.
The filter we use is a Krohn-Hite 3BS8TB-1k/50kg band-
pass filter. This filter has fixed-frequency band-pass range
of 1 kHz to 50 kHz. It has 8 poles, the equivelent of 8
simple filters in series, so the dropoff outside of the cut-
off frequencies should be quite sharp. Connect the output
of the amplifier to the positive input of the Krohn-Hite
Filter. Then connect the output of the filter to the oscil-
loscope. The filter is equipped with an AC power adapter
connector; make sure this is plugged in and that the green
LED is lit indicating that the filter is receiving power.

7. DETAILED JOHNSON NOISE PROCEDURE

7.1. Calibrate the measurement chain

The digital oscilloscope can measure the RMS volt-
age of both periodic and random signals over a dynamic
range of somewhat more than 103, from several milli-
volts to several volts, whereas the Johnson Noise signal
is only microvolts. Thus, with the differential amplifier
set to a nominal gain of 1000, the microvolt noise signals
are amplified sufficiently to be measured in the millivolt
range of the oscilloscope. To determine the overall am-
plification of the amplifier/filter combination, one feeds
a sinusoidal test signal with an RMS voltage Vi in the
millivolt range to the ‘A’ AC-Coupled (through 0.1µF,
shunted to ground with 100MΩ and 25pF in parallel) of
the SRS preamplifier (with the source set to ‘A’), and
measure the RMS voltage V0 of the filter output using
the digitizing oscilloscope. The gain of the system at the
frequency of the test signal is g(f) = V0/Vi.

IMPORTANT: Turn on transients exist - set the in-
put coupling switches of the SRS preamplifier to GND
before turning on the device and before making any con-
nections to another device. Do not transfer from the
GND settings until after all connections are completed.

At the voltage preamplifier, the maximum input signal
in differential mode is 1V DC and 3VPP ≈ 1VRMS AC.
Do not exceed these values! Excessive common-mode

inputs can “turn on” low conduction paths at the input of
the preamplifier to protect the input circuits, and thereby
lower the input impedance.

The “roll-off” frequencies selectable from the front
panel indicate 3dB points in a 6 dB/octave roll off curve.
The output impedence of the preamplifier is 600Ω and
can produce a maximum of 10V pk-pk ahead of 600Ω.
Be careful about your terminations!
The SRS preamplifier has rechargable batteries which
‘trickle charge’ when the unit is plugged into the wall
(and very much slower when the unit is in the ON posi-
tion than when it is in the OFF position. You can use
this feature if you want; it may reduce extraneous noise a
bit. To operate from battery power, set the power switch
to ON, but do not plug in the line cord. Be sure to plug
in the line cord after your session is over to ensure that
the next group has a fully charged set of batteries!

Measure the variation of the test signal RMS
voltage and the gain of the measurement chain as
a function of frequency and produce a rough plot
in your lab notebook

Configure the function generator to output a sine wave
with an RMS amplitude of 20mV. Use the Kay 837 at-
tenuator with 26 dB (1/20) of attenuation to produce a
sinusoid in the millivolt range. Use a BNC tee to simul-
taneously send this signal into the digitizing oscilloscope
and into the ’A’ (AC-Coupled) input of the amplifier with
the source set to ‘A’.

The output of the amplifier should then be fed into the
band-pass filter. Before taking detailed measurements of
g(f), you’ll want to make sure that filter is behaving in
the way you expect it should. Spend a few moments vary-
ing the frequency of the function generator to observe the
behavior below 1kHz, above 50 kHz and in between.

Without touching the amplitude control of the function
generator, measure and record RMS voltages for both
Vi (out of the attenuator) and V0 (out of the band-pass
filter) over the range that will pass the filter (∼0.5kHz to
∼80kHz).

Plot [g(f)]2 against f as you go along to check the
consistency and adequacy of your data.

1. Set the oscilloscope to display both the Vi and V0 si-
nusoids. Use the oscilloscope Voltage measurement
options to measure the RMS voltage of each chan-
nel. The RMS of Vi should remain essentially con-
stant throughout the measurement of g(f). How-
ever, you will want to keep an eye on it during the
process of this measurement to ensure that this is
the case.

2. Turn on the bandwidth limit on for the channel
which is measuring Vi.

3. Make sure the inputs are set to AC coupling to elim-
inate any DC offset in the signals you are measur-
ing.
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FIG. 2: Block diagram of the electronic apparatus for measuring Johnson noise.

50 Ω

Kay 837
Attenuator

Agilent 33120A
Function Generator

Krohn-Hite
3BS8TB-1k/50kg
Band-Pass Filter

-
Input

+
Input

At

20.0 mVRMS Sine Wave -26 dB

SR560
Preamp

Gain = 1000x
A-AC, B-GND
LF Roll-Off: DC
HF Roll-Off: 300k

RMS
Voltage
Measurement

FIG. 3: Block diagram of the electronic apparatus for calibrating the Johnson Noise experiment
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4. Press ‘DISPLAY’, and select ‘AVG 256’ (Note:
Later, when you take noise measurements, you
must select ‘normal’ instead of averaging since the
RMS voltage of the average of n random wave forms
approaches zero as n→∞. On the other hand, the
RMS voltage of the average of many wave forms
consisting of a constant sinusoid plus random noise
approaches the RMS voltage of the pure sinusoid.)

5. Adjust the digital scope amplitude and sweep-speed
controls so that several (∼5-10) cycles of the sinu-
soid appear on the screen.

To reduce errors of measurement and obtain an er-
ror assessment, you can make repeated measurements.
Record the Vrms and frequency displayed at the bottom
of the screen; repeat n times (e.g., n=5) at each setting.
For each setting, compute the mean Vrms, and the stan-
dard error of the mean (= σ√

n−1 ).

Because the oscilloscope is in averaging mode, you will
want to wait several moments for transient signals to av-
erage out before taking a reading after changing the fre-
quency or adjusting anything on the scope. Wait until
you see that Vi and V0 have leveled off in their fluctua-
tions before pressing ’stop’ to take data.

NOTE: It is very important that you keep your mea-
surement chain in the same configuration for making
both gain curve and Johnson Noise measurements. Be
careful not to change any settings on the amplifier in be-
tween these two measurements (one helpful tip for mak-
ing sure the gain of the amplifier is consistent between
measurements taken on different days is to turn the red
’CAL’ knob all the way counter-clockwise until it clicks).

7.2. Measure V 2 for a variety of resistors

When you use the apparatus to measure the John-
son Noise across a resistor, about half the RMS volt-
age is noise generated in the amplifier itself. Interfer-
ence pickup may vary. Since all the contributions to the
measured RMS voltage are statistically uncorrelated,
they add in quadrature. To achieve accurate results
it is essential to make repeated measurements with each
resistor with the shorting switch across the conductor al-
ternately opened and closed. The measure of the mean
square Johnson noise is

V 2 = V 2
R − V 2

S (7.1)

where VR and VS are the RMS voltages measured with
the shorting switch open and closed, respectively.

Measure the Johnson noise at room temperature in
∼10 metal film and/or wire-wound resistors with values
from 104 to 106 ohms. Mount the resistors in the alliga-
tor clips projecting from the aluminum test box equipped
with a single-pole-single-throw (SPST) shorting switch,
a double-pole-double-throw (DPDT) routing switch, and

connections for a thermistor for use in the later temper-
ature measurement. Cover the resistor and its mounts
with a metal beaker to shield the input of the system
from electrical interference. After each noise measure-
ment measure the resistance of the resistor: plug a dig-
ital multimeter into the pin jacks on the aluminum box
and flip the DPDT switch on the sample holder to the re-
sistance measuring position. Before each noise measure-
ment, be sure to disconnect the multimeter (to avoid in-
troducing extraneous electrical noise) and flip the DPDT
switch back to the noise-measurement position.
Be thoughtful about how you are using the digitizing os-
cilloscope to measure the RMS voltages for VR and VS.
Again, you should use AC coupling to eliminate any DC
offset. Also, you will need to be intentional about both
the time and voltage scales that you choose. The range
of voltages the scope is able to digitize is the range shown
on the screen so you will want to fill the screen without
cutting the max/min off. Be sure not to choose too small
a vertical range and in the process cut off your signal!

Keep in mind, that you will want to use only one set-
ting of the voltage scale for all your measurements of VR
and VS for all resistors that you sample. To make sure
you have an appropriate setting, you might want to look
at VR for your highest value of resistance first. As for
the time axis, a setting in the range of 500µs to 5ms per
division should work well.

A good way to determine the appropriate scale for a
given resistor is to set the scope to measure Vmax, take
several readings of this value and make sure it is well
contained (≤75%) in the total range currently displayed.
You can also do this visually by looking for the smallest
scale that appears to contain all the noise fluctuations
within the first three out of the four divisions above or
below the baseline.

Values of VS should remain essentially constant over
all values of resistance. However, subtle changes in your
experimental configuration or procedure could cause VS
to fluctuate. For instance, even the orientation of one
of your cables or whether or not you are touching the
cable can yield different results in your measurements.
Strive to keep things as consistent as possible throughout
a particular series of measurements. Additionally, it is a
good idea to keep an eye on VS and record its value each
time you measure VR.

As during your calibration measurements, you will
want to repeat each measurement at least five times to
reduce random errors and obtain an error assessment for
your measurements.

According to equation 4.3, the value of Boltzmann’s
Constant, k, can be expressed in terms of measured quan-
tities and G, which is a function of R and C:

k =
V 2

4RTG
(7.2)

So in order to calculate k from your measurements of
the Johnson Noise, you will also need to measure the ca-
pacitance, C, seen by the resistor. The SRS preamplifier
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has an input capacitance of 25pF. With this knowledge
in hand, you will still need to determine the capacitance
contributed by the switching box and the cables connect-
ing it to the amplifier. Alternatively, you could simply
measure the capacitance of all these components and the
amplifier simultaneously.

A BK Precision 875A LCR Meter is provided for this
purpose. First use it to measure some known capacitance
by inserting a plain capacitor directly. Once you have
convinced yourself that the meter is functioning properly
and that you know how to read it, devise a way to mea-
sure the same capacitance that the resistor sees.
Remember, capacitance is determined by the geometry
of the conductors and dielectrics in the circuit so it is
very important to have things in the exact same configu-
ration for this measurement as you did for measurements
of the Johnson Noise. Also be aware that any cables you
use to connect the LCR meter to measurement chain will
contribute their own capacitance.

Be sure to make an assessment of the uncertainty in
your measurement of C. Calculate values of k for several
values of C based on this uncertainty. You will have
uncertainty associated with the the quantities V 2, R, and
C. You will need to propagate these errors in order to
determine your uncertainty in k.

The factor G must be recalculated by numerical inte-
gration for each new trial value of R and C. In principle,
if you use the correct value of C in your calculations of G,
then the values of k obtained from Equation 7.2 should
cluster around a mean value close to the value for R→ 0
and should not vary systematically with R. Using the
best values of k and C derived in this way, you can plot
experimental and theoretical curves of V 2/R against R
for comparison.
Question: What happens as R→∞?

7.3. Measure Johnson noise as a function of
temperature

Measure the Johnson noise in a resistor over a range
of temperatures from that of liquid nitrogen (77 K) to
∼ 150◦C. Clip a resistor to the alligator clips and invert
the assembly into a dewar filled with liquid nitrogen. Ask
a technical instructor for help in dispensing the nitrogen
and make sure to wear eye protection and gloves.

To make a high temperature measurement, invert the
assembly into the cylindrical oven, heated by a variac
supply set to ∼40 VAC. Note, it will take some time for
the temperature to equilabrate and stabilize within the
oven. You can take advantage of this slow process to
measure the resistance, the RMS voltages of the John-
son noise and the background as the temperature rises.
Try to disturb the setup as little as possible to prevent
the loss of heated air and a subsequent change in the
resistors temperature. Use the delicate glass immersion
thermometer (range = 0-250◦C) to monitor the temper-
ature of the air bath. Do not allow the temperature

of the oven to exceed 150◦C as this can damage
the wire insulation within the probe.

According to the Nyquist theory the points represent-
ing the measured values of V 2/4RG plotted against T
(◦C degrees) should fall on a straight line with a slope
equal to the Boltzmann constant, and an intercept on
the temperature axis at the centigrade temperature of
absolute zero. Note that if the resistance of the conduc-
tor varies significantly with temperature, then G must
be evaluated separately at each temperature, i.e. the
integral of Equation 4.4 must be evaluated for each sig-
nificantly different value of the resistance.

1. Make a plot of V 2/4RG against T (in ◦C degrees).

2. Derive a value and error estimate of k from the
slope of the temperature curve.

3. Derive a value and error estimate of the centigrade
temperature of absolute zero.

8. SHOT NOISE

A current source in which the passage of each charge
carrier is a statistically independent event (rather than a
steady flow of many charge carriers) necessarily delivers
a “noisy” current, i.e., a current that fluctuates about an
average value. Fluctuations of this kind are called “shot
noise”. The magnitude of such fluctuations depends on
the magnitude of the charges on the individual carriers.
Thus a measurement of the fluctuations should, in prin-
ciple, yield a measure of the magnitude of the charges.

Consider a circuit consisting of a battery, a capacitor
in the form of a photo-diode, a resistor, and an induc-
tor, connected in series as illustrated in Figure 4a. Il-
lumination of the photo-diode with an incoherent light
source causes electrons to be ejected from the negative
electrode in a random sequence of events. Each ejected
photo-electron, carrying a charge of magnitude e, is ac-
celerated to the positive electrode and, during its passage
between the electrodes it induces an increasing current in
the circuit, as shown in Figure 4b.

When the electron hits the positive plate the current
continues briefly due to the inductance of the circuit and
a damped oscillation ensues. The shape of the current
pulse depends on the initial position, speed and direc-
tion of the photo-electron as well as the electrical char-
acteristics of the circuit. The integral under the curve
is evidently the charge e. If the illumination is strong
enough so that many events occur during the duration
of any single electron pulse, then the current will appear
as in Figure 5, in which the instantaneous current I(t)
fluctuates about the long-term average current Iav.

In this part of the experiment you will measure, as
a function of Iav, the mean square voltage of the out-
put of an amplifier and a band-pass filter system whose
input is the continuously fluctuating voltage across RF .
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FIG. 4: (a) Schematic diagram of a circuit in which the
current consists of a random sequence of pulses

generated by the passage of photoelectrons between the
electrodes of a photo-diode. (b) Schematic

representation of the current pulse due to the passage of
one photo-electron.

T

t

I(t)

Iav = ke

FIG. 5: Plot of a fluctuating current against time with
a straight line indicating the long-term average current.

According to the theory of shot noise, a plot of this quan-
tity against the average current should be a straight line
with a slope proportional to e. The problem is to figure
out what the proportionality factor is.

8.1. THEORY OF SHOT NOISE

The integral under the curve of current versus time
for any given pulse due to one photo-electron event is
e, the charge of the electron. If the illumination is con-
stant and the rate of photoelectric events is very large,
then the resulting current will be a superposition of many
such waveforms ik(t) initiated at random times Tk with
a “long term” average rate we will call K, resulting in
a fluctuating current with an average value Iav = Ke,
as illustrated in Figure 5. The fluctuating component
of such a current was called “shot noise” by Schottky in
1919, who likened it to the acoustic noise generated by a
hail of shot striking a target.

The fluctuating current is

I(t) = Σkik(t) (8.1)

and its mean square during the time interval T is

〈I2〉 =
1

T

∫ T

0

[Σkik(t)]
2dt (8.2)

The problem is to derive the relation between the mea-
surable properties of the fluctuating current and e. Al-
though the derivation is somewhat complicated (see Ap-
pendix C), the result is remarkably simple: within the
frequency range 0 < f � Iav

e , the differential contri-
bution to the mean square of the total fluctuating cur-
rent from fluctuations in the frequency interval from f to
f + df is (see Appendix B)

d〈I2〉 = 2eIavdf (8.3)

Suppose the fluctuating current flows in a resistor of
resistance RF connected across the input of an amplifier-
filter combination which has a frequency-dependent gain
g(f). During the time interval T , the voltage developed
across the resistor, IRF , can be represented as a sum
of Fourier components with frequencies m/2T , where
m = 1, 2, 3, ..., plus the zero frequency (DC) component
of amplitude IavRF . Each component emerges from the
amplifier-filter with an amplitude determined by the gain
of the system for that frequency. The mean square of
the sum of Fourier components is the sum of the mean
squares of the components (because the means of the
cross terms are all zero). Thus, in the practical limit of
a Fourier sum over closely spaced frequencies, we can ex-
press the mean square voltage of the fluctuating output
signal from the amplifier-filter as the integral

V 2
0 = 2eIavR

2
F

∫

0

[g(f)]2df + V 2
A (8.4)

where V 2
A has been added to represent the constant

contributions of the amplifier noise, and Johnson Noise
in RF , to the total mean square voltage, and where the
DC term is omitted because the DC gain of the amplifier-
filter is zero.

To get a feel for the plausibility of the shot noise for-
mula one can imagine that the current in the photo-
diode circuit is a step function representing the amount
of charge ne released in each successive equal time inter-
val of duration τ divided by τ , i.e., the mean current in
each interval neτ . The expectation value of n is 〈n〉 = Kτ .
We assume there is no statistical correlation between the
numbers of events in different intervals. According to
Poisson statistics the variance of n (mean square devia-
tion from the mean) is the mean, i.e.,

〈(n− 〈n〉)〉2 = 〈n2〉 − 〈n〉2 = 〈n〉 = Kτ (8.5)

It follows that the mean square value of the current over
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time would be

〈I2〉 = 〈
(ne
τ

)2
〉

=
( e
τ

)2
〈n2〉

=

(
e

τ

)2[
〈n〉+ 〈n〉2

]

=
eIav
τ

+ I2ave (8.6)

which shows that the fluctuating term is proportional to
eIav as in the exact expression for the differential contri-
bution, Equation 8.3.

Actually the current at any given instant from an il-
luminated photo-diode is the sum of the currents due to
the photoelectrons ejected during the previous brief time
interval. Thus the currents at any two instants separated
in time by less than the duration of the individual pulses
are not statistically independent. Moreover, the simple
scheme provides no handle on the frequency spectrum of
the noise which one must take into account in evaluating
the response of the measurement chain. One approach to
a rigorous solution is presented in Appendix B. Others
are possible.

9. SHOT NOISE EXPERIMENTAL
PROCEDURE

The procedure has three parts:

1. Calibration of the gain of the measurement chain
as a function of frequency;

2. Measurement of the mean square noise voltage at
the output of the measurement chain as a function
of the average current in the diode circuit as it is
varied by changing the intensity of illumination.

3. Calculation of the charge of the photoelectrons.

9.1. CALIBRATION OF THE MEASUREMENT
CHAIN

Figure 7 is a block diagram of the electronic appara-
tus, and Figure 6 is a diagram of the diode circuit and
preamplifier. The current I(t) in the photo-diode circuit
is converted to a voltage V = IRF at the point indicated
in Figure 6 by the operational amplifier with precision
feedback resistors in the first stage of the preamplifier
inside the photodiode box. This voltage is filtered to re-
move frequencies <100 Hz and is fed to the second stage
where it is amplified by a factor of ∼10. The output
signal is further amplified by the filtering preamp, then
filtered by the 8-pole bandpass filter, before being mea-
sured by the RMS voltmeter.

There are two methods for measuring the output signal
from the photo-diode box. The first is a digital oscillo-
scope; it gives a qualitative view of the signal, useful for
debugging, and can perform signal averaging. This is use-
ful for the calibration phase, but averaging the shot noise
would be counterproductive. If you choose to measure
the noise with this method, make sure to put the oscil-
loscope trigger to “auto” and move the trigger threshold
above the signal to avoid a skewed data set. The Agilent
oscilloscopes in lab have a measurement accuracy of at
most 3 digits, which is a bit low. The second method uses
multimeters. Multimeters allow you to select the AC or
DC part of the signal. The big advantage is the number
of digits given: the Agilent multimeters have 6 1

2 digits,
giving better measurement precision. A combination of
the two methods is also useful.

The photo-diode box has a test input for calibration of
the overall gain of the measurement chain as a function of
the frequency. The typical shot noise RMS voltage across
the precision resistor RF is of the order of 10 microvolts.
Since the gain of the circuit in the photo-diode box is
∼10, a gain of 100 in the amplifier will yield a total gain
of 103 and bring the signal in the pass band of the filter
up to the ∼10 millivolt level that can be readily mea-
sured by the digitizing oscilloscope. As in the Johnson
noise calibration, you can determine the effective gain of
the amplifier-filter system as a function of frequency by
feeding a millivolt sinusoid signal of measured RMS volt-
age from the function generator into the test input of the
phototube box and measuring the RMS voltage of the
signal out of the filter.

9.1.1. Calibration

Select the sine wave output of the function generator,
set the the RMS voltage to ∼20 mV, and feed the signal
directly to the digitizing oscilloscope. Without touching
the amplitude control on the function generator, measure
the RMS voltage for several frequencies over the range of
the filter band pass and plot the result so you have a
handy data base for the subsequent gain measurements.

Measure the gain of the measurement chain as a func-
tion of frequency. Make sure the photo-diode voltage is
switched off so that it behaves as an open circuit with no
photoelectric current. Switch on the amplifier voltage on
the photo-diode box. Feed test signals of various frequen-
cies into the ‘test input’ and measure the RMS voltage at
the output of the bandpass filter. Experiment with the
scope settings to obtain higher precision results. Plot
the values of g2 as you go along to assess where you need
more or less data to define accurately the gain-squared
integral.
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FIG. 6: Diagram of the photo-diode and preamplifier circuit.

To oscilloscope when measuring shot noise
To "test in" when measuring the gain versus frequency

Function
Generator

Box
Bandpass
Filter

 

Photodiode

 test-in
variable
light
source

Filtering
Preamp

Multimeter
(DC)

RMS AC
Measurement

FIG. 7: Block diagram of the experimental arrangement
for measuring shot noise.

9.2. MEASUREMENT OF THE AVERAGE
CURRENT AND THE CURRENT NOISE

Remove the cable from the test input and cover the
input plug with the cap provided to short the input to
ground. This creates a path for current to travel from
ground, through the resistor, into the illuminated diode.
Set the multimeter to measure DC voltage and plug it
into the “first stage output” to measure the voltage RF I.
Leave the rest of the measurement chain just as it was
when you calibrated it.

There are two banana plug ports to measure the cur-
rent to the light bulb. It is a good idea to check the
current before you start. The current should change as
you adjust the potentiometer knob, but make sure that
the current does not exceede 300 mA to avoid damag-
ing the light bulb. If the switch is on and there isn’t a
change in current as you twist the knob, the light bulb
or the batteries are probably dead. Once you finish with
this check, it is a good idea to short the two ports to
reduce extraneous noise.

Record the RMS voltage from stage 2 and the DC volt-
age from stage 1 for various settings of the light bulb
knob. Many repeated measurements at each light inten-
sity will beat down the random errors.

10. ANALYSIS

Plot V 2
0 as a function of the combined quantity

2R2
F Iav

∫ ∞

0

g2(f)df (10.1)

From the slope of this line determine the charge on the
electron.

10.1. Possible Theoretical Topics

• The Nyquist theorem.

• Shot noise theory

Some useful references for this lab include [? ? ? ? ?
].

11. Equipment List

Manufacturer Description URL

Agilent Oscillocope and Multimeters agilent.com

SRS SR560 Preamplifier thinksrs.com

Kron-Hite 8-Pole Band-Pass Filter kron-hite.com

Kay Precision Attenuator
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APPENDIX A: A MECHANICAL EXPERIMENT
TO DETERMINE k

Before turning to a detailed consideration of the John-
son noise experiment, it is amusing to consider the pos-
sibility of a mechanical determination of k with a macro-
scopic system having one degree of freedom, namely a
delicate torsion pendulum suspended in a room in ther-
mal equilibrium (i.e. no drafts, etc.) at temperature
T . The degree of freedom is the angular position θ with
which is associated the potential energy 1

2κθ
2. Accord-

ing to the equipartition theorem (see below), the mean
thermal potential energy is

1

2
κ〈θ2〉 =

1

2
kT (A1)

where κ is the torsion constant of the suspension, and
〈θ2〉 is the mean square angular displacement of the pen-
dulum from the equilibrium orientation. Thus, in princi-
ple, by measuring 〈θ2〉 over a time long compared to the
period, one can determine k. To judge what this might
require in practice, imagine a torsion balance consisting
of a tiny mirror (for reflecting a laser beam) suspended
by a 0.5 mil tungsten wire 10 feet long. Such a suspen-
sion has a torsion constant of the order of 10−3 dyne cm
rad−1. According to Equation A1, at 300 K the value
of 〈θ2〉1/2, i.e. the RMS value of the angular deflection,
would be about 1 arc second. Such an experiment might
be possible, but would be exceedingly difficult.

APPENDIX B: DERIVATION OF THE RMS
THERMAL VOLTAGE AT THE TERMINALS OF

AN RC CIRCUIT

Figure 1 shows the circuit equivalent to the resistor and
coaxial cables that are connected to the PAR preampli-
fier for the measurement of Johnson noise. The equiva-
lent circuit consists of a voltage source of the fluctuating
thermal emf V in series with an ideal noiseless resistor of
resistance R and a capacitor of capacitance C. According
to Faraday’s Law, the integral of the electric field around
the RC loop is zero, so

V = IR+
Q

C
(B1)

According to charge conservation (from Ampere’s Law
and Gauss’ Law), the current into the capacitor equals
the rate of change of the charge on the capacitor, so

I =
dQ

dt
(B2)

We seek an expression in terms of d〈V 2〉, R, and C for
the contribution to the RMS voltage across the terminals
in a narrow frequency range, i.e.

d〈V 2〉 = d〈Q2〉/C (B3)

Consider one Fourier component of the fluctuating ther-
mal emf across the resistor, and represent it by the real
part of νJ = ν0ejωt, where j =

√
−1. The resulting

current is the real part of i = i0ejωt, the charge on the
capacitor is the real part of its integral q = −(j/ω)i, and

the desired output voltage is the real part of q
C = −( j

ωC i).
Substituting the expressions for i and q into Equation B1
and canceling the time-dependent terms, we find

ν0 = (R− j

ωC
)i0 (B4)

Solving for i0 we obtain the relation

io =
ν0

R− j
ωC

(B5)

so

ν′J =
q

C
= −(

j

ωC
)i =

−jνJ
ωRC − j (B6)

The statistically independent contribution which this
mode gives to the measured total mean square noise volt-
age is the square of its amplitude which we find by mul-
tiplying ν′J by its complex conjugate:

〈ν′2J〉 =
〈ν2J〉

1 + (ωRC)2
(B7)

Summing all such contributions in the differential fre-
quency range df, we obtain

〈dV 2〉 = 4RfkTdf (B8)

where

Rf =
R

1 + (2πfRC)2
(B9)
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APPENDIX C: DERIVATION OF THE SHOT
NOISE EQUATION

Following is an abbreviated version of the shot noise
theory given by Goldman (1948). We begin by expressing
the current in the photodiode circuit due to a single event
that occurs at time Tk, like that depicted in Figure 4b,
as a Fourier series over a long time interval from 0 to T .
Calling this current pulse i(t − Tk) we represent it as a
Fourier series:

i(t−Tk) =
a0
2

+

∞∑

n=1

(
an cos

2πnt

T
+ bn sin

2πnt

T

)
(C1)

where

a0 =
2

T
×
∫ T

0

i(t− Tk)dt =
2e

T
(C2)

an =
2

T
×
∫ T

0

i(t−Tk) cos
2πnt

T
dt =

2e

T
cos

2πnTk
T

(C3)

bn =
2

T
×
∫ T

0

i(t−Tk) sin
2πnt

T
dt =

2e

T
sin

2πnTk
T

(C4)

with i(t− Tk) = eδ(t− Tk).
The area under the curve in Figure 4b is the charge

e of one electron; it represents the “impulse” of the
shot, and is accounted for in the Fourier representation
by the lead term in the series whose coefficient is given
by Equation C2. To justify Equations C3 and C4 in
the context of the present experiment we note that the
gain of the amplifier-filter system used in this measure-
ment is different from zero only for frequencies such that
f = n/T � 1/τ . Consequently we can confine our cal-
culation of the Fourier coefficients to those for which
nτ � T . It follows that the cos and sin factors in
the integrands of equations C3 and C4 do not vary
significantly over the range of t in which i(t− Tk) differs
from 0, and that they can therefore be taken outside their
integrals with their arguments evaluated at the instant
of the event. In other words, the function representing
the current impulse of a single event acts like a delta-
function. Substituting the expressions for a0, an, and bn
from equations C2, C3, and C4 into C1 we obtain

i(t− Tk) =
e

T
+

2e

T

∞∑

n=1

cos
[2πn(t− Tk)

T

]
. (C5)

We suppose now that many such events pile up to pro-
duce the total current at any given instant. We seek a
way to add the currents due to the individual events to
obtain the differential contribution d〈I20 〉 in the frequency
interval df to the mean square of the sum. We use the
well known fact that the mean square of the sum of all
the Fourier components is the sum of the mean squares
of the individual components (the mean values of the

cross-frequency terms in the squared Fourier series are
all zero). The quantity d〈I20 〉 is therefore the sum of the
mean squares of the individual contributions in the fre-
quency range df . To evaluate it we first focus attention
on the nth Fourier component which we represent by

cn cos

(
2πnt

T
− φn

)
(C6)

to which the kth event contributes the quantity

2e

T
cos

(
2πn(t− Tk)

T

)
(C7)

The mean square value of the nth component is c2n
so our immediate problem is to evaluate the quantity c2n.
Since the events occur at random times from 0 to T , their
contributions to the nth component have random phases
which are distributed uniformly from 0 to 2π. Conse-
quently, we must add them as vectors. To do this we
first group them according to their phase. The expected
number with phases between φ and φ+ dφ is dφ

2πKT .

q =
dφ

2π
KT (C8)

Combining this with equations C6 and C7, we find that
the average value of the sum of the contributions with
phase angles in the range from φ to φ+dφ for the Fourier
component of frequency n/T is

dφ

2π
KT

2e

T
cos

(
2πnt

T
−φ
)

=
Ke

π
cos

(
2πnt

T
−φ
)

(C9)

We now represent each one of the preliminary sums
given by equation C8 by a differential vector in a two
dimensional phase diagram. Added head to tail in order
of increasing phase, these vectors form a closed circular
polygon of many sides. If instead of the exact expected
numbers of events contributing to each differential vector,
we use the actual numbers q1, q2, ....., then, in general,
the polygon will not quite close due to statistical fluctua-
tions in these numbers. The line segment that closes the
gap is the overall vector sum for this particular Fourier
component. It will have a random direction and a tiny
random length that represents the net effect of the fluctu-
ations. Its x and y components will have zero expectation
values, but finite variances (mean square values). Each
contribution to the total x component is a number of
events that obeys a Poisson distribution with a variance
equal to its expectation value. By a well known theorem
of statistics (used frequently in error analysis), the vari-
ance of the sum is the sum of variances. Thus the mean
square of the x component of the vector representation
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of the nth Fourier component is

4e2

T 2
(q1 cos2 φ1 + q2 cos2 φ2 + ...) =

=
4e2

T 2

KT

2π

∫ 2π

0

cos2 φdφ

=
2e2K

T
(C10)

The mean square of the y components has the same
value. And since the vector itself is the hypotenuse of
the right triangle formed by the x and y components,
the mean square of its length is the sum of the mean
squares of the two components. Thus

〈c2n〉 =
4e2K

T
(C11)

and it follows that the contribution of the nth Fourier
component to d〈I20 〉 is

〈C2
n〉
2 = 2e2K

T . The frequency of

the nth component is f = n/T , so the number of Fourier
components corresponding to a frequency bandwidth df
is dn = Tdf . Therefore the contribution to the mean
square value of the sum of the Fourier components in the
frequency range df is

d〈I20 〉 =
2e2K

T
Tdf = 2e2Kdf (C12)

The average current due to the many events is Iav = Ke.
Thus the final expression for the differential contribu-
tion to the mean square of the fluctuating component
of the current from the differential frequency interval df
is just that given by Equation 8.3 from which follows
Equation 8.4, the desired formula for the relation be-
tween measured quantities and e.

APPENDIX D: ALTERNATIVE SHOT NOISE
EXPLANATION - CONTRIBUTED BY SETH

DORFMAN

Consider a photodiode circuit where current is pro-
duced by a light source that causes individual electrons
to be emitted from the cathode. Each photoelectron will
produce a current pulse whose area is the unit of electric
charge. Since the total current is a superposition of cur-
rents produced by discrete events, the current produced
will not be completely constant. The varying component
of this current is known as shot noise. It was first cata-
loged by W. Schottky in a 1918 paper [? ].

To derive a quantitative expression that may be used to
analyze this phenomena, consider a single current pulse
Gn(t − Tn) produced by a single electron striking the
anode. The pulse has a narrow width between t = Tn
and t = Tn + ∆t. Following Goldman [? ], the pulse
may be approximated as an impulse and expanded in a
Fourier series in the interval from 0 to T:

Gn(T − Tn) =
e

T
+

2e

T

∞∑

m=1

cos
2πm(t− Tn)

T
(D1)

The first term in the expansion is the DC current for a
single electron event; the series term makes up the fluc-
tuating component. The total current from many events
may also be expanded in a Fourier representation. A sin-
gle frequency component of this sum is made up of a sum

of contributions from the Gnm = 2e
T cos 2πm(t−Tn)

T term
in each Gn(t− Tn). However, since Tn may be anywhere
in the interval from 0 to T, the phases of these compo-
nents will be randomized. In other words, the compo-
nents of the total current may be though of as vectors of
the same magnitude, but with all possible phases.

A convenient analogy is unpolarized light passing
through a linear polarizer. In that case, the randomized
cos2 φ contribution to the intensity averages out such that
the final intensity is half of the initial intensity. Similarly,
the mean square of the contribution of each Gnm to the
total current at a given frequency m

T is:

〈Gnm2〉 = (
2e

T
)2〈cos2φnm〉 =

2e2

T 2
(D2)

Now, let K equal the number of pulses Gn(t− Tn) per
second. The total number of pulses in the interval from
0 to T in any given time is then KT. Thus the sum of

〈Gnm2〉 over all pulses n is 2e2

T 2 KT = 2e2K
T . This is the

mean square of the total current at a given frequency.
Since the frequency is given by F = m

T , there are T∆F
frequencies in a given frequency band. Thus the root
mean square current within a given frequency interval is
given by:

I2RMS =
2e2

T 2
(KT )(T∆F ) = 2e2K∆F (D3)

Here eK represents the average current. This relation
will be explored further in the experiment.
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The Quantum Mechanics of α-Decay

MIT Department of Physics
(Dated: September 5, 2011)

The purpose of this experiment is to explore the relation between the mean lives of alpha-active
nuclides and the energies of the alpha particles they emit. You will study portions of the sequences
of radioactive transformations whereby uranium is transmuted into lead. Various procedures will
be used to measure the alpha-particle energies and lifetimes of five alpha-active nuclides with mean
lives ranging from days to microseconds, as well as the mean lives of two beta-active nuclides.

1. Preparatory Questions

1. With the help of Figures ??, ??, and ??, in Ap-
pendix ?? and the associated reference [1], con-
struct charts of the decay chains that start with
the naturally occurring isotopes of uranium, U, and
thorium, Th, terminating with a stable isotopes of
lead. For each nuclide, place a box in a coordinate
system with atomic number and element name on
the x-axis and mass number (total number of nucle-
ons) on the y-axis. In each box write the half life,
decay mode(s) and energies, and branching proba-
bilities. Be careful when looking up the decay en-
ergy – most sites list the total energy of the decay
rather than just the energy of the alpha particle.
For example, the energy of the alpha particle emit-
ted in the decay of Po212 is 8.78 MeV, not 8.95
MeV. These energies can be found in reference [2].

2. The Geiger-Nuttall Relationship. Create a log-log
plot of the expected relation between the mean lives
of alpha-active nuclides and the energies of the al-
pha particles they emit.

3. In section 4, we analytically solve the coupled dif-
ferential equations for a two-nuclide decay chain,
and examine some special limiting cases. However,
in the case of our experiment with decay chains
consisting of dozens of nuclides, this approach be-
comes impractical. Today, it is much more prudent
to produce a MATLAB implementation of a Bate-
man equation solver.

In the liquid scintillator experiment, we employ
a relatively pure source of Rn222 to measure the
half-life of Rn222 and Po218. Using the bate.m
script described in Appendix ??, the example im-
plementation, and your answer to prepatory ques-
tion 1, write a script that shows the activity of all
the nuclides following Rn222 all the way to Pb206.
You should be able to figure out how much Rn222

there is from the information on the activity of the
source in section 7.1. Make necessary approxima-
tions for multiple branchings. Plot your results,
explain them, and place them in your notebook.

4. Why are there no natural nuclides with Z > 83 and
A = 4n+ 1?

5. Consider two counters, #1 and #2, each producing
random, uncorrelated pulses at average rates of r1
and r2, respectively, where r1 � r2. What is the
rate at which a pulse from #1 is succeeded by a
pulse from #2 within the time interval from t to
t+ dt? What is the mean value of such time inter-
vals (of false coincidences)? (In a measurement of
the mean life of a nuclide by the method of delayed
coincidences, you will have to take care that your
data are not swamped by events produced by ran-
dom and uncorrelated events in the two detectors.)

6. Explain how a silicon barrier solid state detector
works. (see Reference[3]).

2. Introduction

The first Nobel Prize in physics was awarded in 1901 to
Wilhelm Röntgen for his discovery on November 8, 1895
that a penetrating radiation (X-rays) is emitted by the
fluorescing glass of a cathode-ray tube under bombard-
ment by cathode rays inside the tube. (Frederick Smith
at Oxford missed that discovery: When he earlier noticed
that films left near a cathode ray tube were darkened, he
told his assistant to move the films away.) Antoine Bec-
querel heard Röntgen’s report on January 20, 1896 at
the Académie des Sciences. He immediately set about to
investigate whether other fluorescent materials emitted
penetrating radiations. After ten days without success
he read about the fluorescent properties of uranium salts.
On January 30 he sprinkled some uranyl potassium sul-
fate on top of a photographic plate wrapped in light-tight
paper, exposed the salt to sunlight for a few hours, de-
veloped the plate, and found it darkened. He prepared
to repeat the experiment on February 26 and 27, but the
weather was cloudy, so he put the plate and salt away
in a drawer to wait for a sunny day. On March 1 he
developed the plate, “expecting to find the images very
feeble. On the contrary, the silhouettes appeared with
great intensity. I thought at once that the action might
be able to go on in the dark.” Thus Becquerel discovered
the phenomena that was later dubbed radioactivity by
Marie Curie.

Marie Sklowdowska came from Warsaw to Paris to
study at the Sorbonne in 1891. A few years later she
began her studies of radioactivity in collaboration with
her husband, Pierre Curie. By 1898 she had discov-
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ered the radioactivity of thorium and had isolated (from
residues of uranium refinement) a new element, radium,
and showed that its activity per gram was a million times
greater than that of uranium.

Ernest Rutherford, a young New Zealander working
at the Cavendish Laboratory of Cambridge University,
showed that the radiation emitted by uranium is of two
types distinguished by their penetrating power. In a pub-
lication, completed in 1899 after he had moved to McGill
University in Montreal, Rutherford called the easily ab-
sorbed radiation “alpha rays” and the more penetrat-
ing radiation “beta rays”. Becquerel discovered that the
beta rays are deflected by electric and magnetic fields
like charged particles with the same value of e/m as the
recently discovered electrons. Then Rutherford demon-
strated that alpha particles are doubly charged ions of
helium, whose spectrum had been discovered first in the
sun only a few years previously, and then in the gases
emitted by uranium ores. Shortly thereafter, Paul Vil-
lard in France identified a third type of radiation he called
“gamma”, which turned out to be high energy electro-
magnetic radiation.

In 1900 Rutherford and Frederick Soddy found that
thorium emits a short-lived radioactive gaseous element
(an isotope of radon, Rn228, called thoron) that is chem-
ically inert, like argon. From measurements of its ra-
dioactivity they drew the epochal conclusion that thoron
decays into other radioactive elements — the discovery of
the transmutation of elements. A year later Marie Curie
discovered a similar gaseous element Rn226 emitted by ra-
dium. In a series of papers on radioactivity Rutherford
and Soddy unraveled most of the complex relations be-
tween the decay products of uranium and thorium. They
discovered the exponential law of radioactive decay

N(t) = N0e
−t/τ (2.1)

in which the “mean life” τ of the substance is a funda-
mental characteristic that is unaffected by heat, chemical
combination, or any other condition that affects the elec-
tronic structure of the atom (except the absence of K
electrons in the case of beta decay by electron capture).
Also in 1903, Soddy published a calculation of the energy
released by the decay of radium and wrote that it is “at
least twenty-thousand times, and may be a million times,
as great as the energy of any molecular change.” Four
years later Albert Einstein, in his discovery of the theory
of relativity, deduced the equivalence of mass and energy
expressed in his equation E = mc2 and suggested that
the energy released in radioactivity was converted mass.

Rutherford dominated experimental nuclear physics
for the next thirty years. His greatest discovery was
the nucleus itself which he perceived in the results of
the alpha-particle scattering experiments he initiated at
Manchester University in 1910. A fascinating account of
this era has been written by Richard Rhodes [1986] in
The Making of the Atomic Bomb from which the above
history is taken [4].

3. Radioactivity

Most of the natural elements with atomic numbers
from 1 (hydrogen) to 82 (lead) are stable. The few excep-
tions include the isotope of potassium, K40, which consti-
tutes 0.01% of natural potassium and suffers beta decay
with a mean life of 1.9 billion years. All the isotopes of
the elements with Z > 82, with the possible exception of
Bi209, are unstable and decay with half lives ranging from
microseconds to billions of years. So where, when, and
how did the natural radioactive elements arise? Since
the 1950s, and particularly from the work of William
Fowler of Caltech and his collaborators, it has become
clear that all the elements with Z > 26 (iron) are built
up suddenly from lighter elements by absorption of neu-
trons in the neutron-rich region of a supernova during the
first ∼1 sec of the explosion, the so-called rapid process
(r-process). Supernovas occur in our galaxy at a rate of
about 2 or 3 per century. One of these probably trig-
gered the formation of the solar system and enriched its
raw material with freshly synthesized heavy elements of
which all with Z > 82 have been decaying ever since.

Light nuclei with equal numbers of protons and neu-
trons (e.g., He4, C12, O16) are stable. Heavier nuclei
(Z > 10), to be stable, need a higher proportion of neu-
trons to provide sufficient nuclear-force binding to over-
come the Coulomb-force repulsion of the protons (e.g.,
K41, where A = 2Z + 3). Thus a nucleus with too few
neutrons will convert a proton to a neutron by emission of
a positron and an electron neutrino. On the other hand,
a free neutron is slightly heavier than the proton and
decays into a proton, electron, and anti-neutrino with a
mean life of ∼ 12 minutes. Therefore, it can be energet-
ically favorable for a nucleus with too many neutrons to
convert a neutron to a proton by emission of an electron
and anti-neutrino. Thus nuclides with too few or too
many neutrons transmute by electron emission toward
the stable region along the bottom of the valley. A 3-D
plot of neutron number (y-axis) versus proton number
(x-axis) versus potential energy per nucleon (z-axis) for
all the isotopes of the elements shows a steep potential
energy “valley of stability” with a positive curvature in
the x-y plane. The three kinds of radioactive transmuta-
tion are:

1. Alpha decay (ejection of a helium nucleus consist-
ing of two neutrons and two protons) is the most
common decay mode for elements above lead and
near the bottom of the stability valley.

2. Beta decay (emission of a positive or negative elec-
tron or capture of a K-shell electron together with
emission of a neutrino or anti-neutrino) generally
occurs in nuclides on the valley sides and serves to
correct unstable proportions of neutrons and pro-
tons.

3. Spontaneous fission (division into two nuclei) oc-
curs above uranium and is a mode of rapid decay
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of the artificial elements above Z = 100. Theo-
retical speculation about possible high-Z islands of
stability have stimulated numerous, and so far unc-
successful, experiments to produce elements with
Z = 114 or other so-called magic numbers.

A chain of radioactive decays, starting with a heavy nu-
clide near the bottom of the stability valley (e.g., U238)
and proceeding by alpha decays, produces nuclides with
increasing deficiencies of neutrons and corresponding po-
sitions higher up the valley wall. The deficiency is cor-
rected at various steps in the chain by emission of a neg-
ative electron, i.e., beta decay. The three decay chains
found in nature are illustrated in Appendix ??. The
fourth doesn’t exist in nature because it has no long-
lived parent nuclide that could have survived in signifi-
cant quantity since the creation of earth’s elements. Al-
pha decay occurs whenever permitted by energy conser-
vation, unless preempted by beta decay. Consider the
decay process

Ra226 −→ Rn222 + He4. (3.1)

The total mass-energy (mc2 + kinetic energy) must be
conserved. Thus, in the spontaneous alpha-decay of a
radium nucleus we have,

Ra226 = Rn222∗ + He4 +Q, (3.2)

where Q = 4.869 MeV is the total kinetic energy of the
product nuclei if they are in their ground states. (Precise
values of isotopic masses are listed in the CRC nuclide ta-
ble). The energy Q is shared in accordance with the con-
servation of momentum between the mutually repelled
He4 and Rn222 nuclei. However, the latter, being a com-
plex system of many constituent particles, may be left
in an excited state from which it later decays by gamma
emission. Thus the kinetic energy of the remnant par-
ticles (alpha particle and Rn222 nucleus) just after the
decay event depends on the energy of the excited state
of the Rn222 nucleus. High resolution spectrometry of
the alpha particles from Ra226 reveals a “fine structure”
[4.782 MeV (94.6%), 4.599 MeV (5.4%), 4.340 MeV
(0.0051%), 4.194 MeV (7 × 10−4%)], each energy cor-
responding to a particular excited state of the daughter
nuclide Rn222.

Generally, a nuclide, created in an excited state by
alpha or beta decay of its parent nuclide, decays to its
ground state by gamma-ray emission. In some cases it
may undergo alpha decay before it has had time to settle
to its ground state, thereby giving rise to a more energetic
alpha particle, which is another source of fine structure
in alpha spectra.

3.1. The Geiger-Nuttall Relationship:

The Correlation Between Energy and Half Life in
Alpha Decay

The principal aim of this experiment is to explore the
correlation between the half lives of radioactive nuclides
and the energies of the alpha particles they emit — the
shorter the half life the higher the energy. The most
abundant isotope of uranium, U238, with a half life, of
4.5 billion years, emits alpha particles with an energy of
4.2 MeV; Po212 with a half life of 0.304 µs emits alpha
particles with an energy of 8.785 MeV — in this case a
ratio of ∼ 4 × 1023 in half life corresponds to a factor
of only ∼ 2.1 in energy! The quantitative expression
of this correlation, discovered early in the investigation
of radioactivity, is called the Geiger-Nuttall law and is
expressed by Equation 3.3,

lnλ = a1 lnEα + a2, (3.3)

where λ is the decay constant (= 1/τ), Eα is the emitted
α-particle energy and a1 and a2 are constants.

Then, in 1927, Rutherford observed that the scatter-
ing of 8.57 MeV alpha particles (from Po212) by a thin
uranium foil is exactly what is expected for elastic scat-
tering by a perfect 1/r Coulomb potential down to the
closest distance of approach for such particles, namely
∼ 3 × 10−12 cm. Thus the Coulomb barrier around a
uranium nucleus must be at least as high as 8.57 MeV,
and any alpha particle going over the top to get out must
be pushed away by Coulomb repulsion resulting in a fi-
nal kinetic energy of at least that amount. And yet the
energy of alpha particles emitted by uranium is only 4.2
MeV!

The explanation of these remarkable facts was an early
triumph of the quantum mechanics discovered indepen-
dently and in different forms by Erwin Schrödinger and
Werner Heisenberg in 1926. Two years later, George
Gamow, a postdoc from Russia studying with Niels Bohr
at the Institute for Theoretical Physics in Copenhagen,
derived the equation for quantum mechanical tunneling
of alpha particles through the Coulomb barrier of the nu-
cleus. Two young Americans studying in Europe, Ed-
ward Condon and Ronald Gurney, discovered the same
explanation independently. Their publications, Refer-
ences [5, 6], on the topic are reproduced in the Junior
Lab electronic library. From their barrier penetration
theory is derived Equation 3.4 which is remarkably simi-
lar to the Geiger-Nuttall relationship, Equation 3.3, em-
pirically determined many years earlier.

lnλ = a1E
−1/2
α + a2 (3.4)

As mentioned earlier, radioactive decay is described by
Equation 2.1 where τ is the mean life. The half life,
τ1/2, is the solution of the equation

e−τ1/2/τA =
1

2
, (3.5)
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which is

τ1/2 = τA ln 2 = 0.693τA. (3.6)

3.2. The Quantum Mechanics of Alpha-Particle
Emission

A very nice and accessible introduction to this mate-
rial is given in Reference [7, 8]. Nuclei consist of protons
and neutrons held together by the strong, short range
nuclear force which exceeds the Coulomb repulsion be-
tween the protons at distances less than of the order of
1 fermi (10−13 cm). The potential function (a plot of
the potential energy per unit charge of a positive test
particle against position) for a spherical high-Z nucleus
is sketched in Figure 1. Inside the nuclear radius the
potential can be approximated by a square well poten-
tial. Outside, the barrier is accurately represented by a
potential proportional to 1/r. The wave function of an
alpha particle, initially localized inside the well, can be
represented as a traveling wave that is partially reflected
and partially transmitted at the barrier. The transmis-
sion coefficient, very small, is the probability that the
alpha particle will penetrate the barrier. As it bounces
back and forth inside the well the particle has multiple
chances of penetrating the barrier and appearing on the
outside. If it does, then the potential energy which the al-
pha particle had inside the nucleus is converted to kinetic
energy as it slides down the outer slope of the barrier.
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FIG. 1: Plot based on Figure 5.7 from Evans [1955] [8]
illustrating the nuclear potential barrier, and the effects

of changes in the nuclear parameters on the
transparency of the barrier, where Z is the atomic

number, R is the radius of the nucleus, V , M , T are
respectively the potential energy within the nucleus,
mass and bouncing period of the emitted particle.

4. Evolution of Radioactive Mixtures: The
Bateman Equations

The source of radioactive nuclides in the present exper-
iment is an ancient (∼ 109 years old) sample of the olive-
green-colored mineral pitchblende containing triuranium
octaoxide (U3O8). These rocks were borrowed from the
Harvard mineral collection to which it was donated by a
young rock hound who pried it out of a deposit between
layers of mica in the granite shield of Maine. Some phys-
ical characteristics of U3O8 are a crystal density of 8.30
g cm−3 and a bulk (ore) density ranging from 1.5 to 4.0
g cm−3. Our samples happen to be relatively enriched in
U3O8. The specific activity of U238 is 3.3× 10−7 Ci g−1
1. U3O8 is in soluble in water but will decompose to a
solid ceramic (UO2) material above 1300 ◦C. This latter
form is most commonly used as fuel for nuclear reactors.

The sample is evolving in time as the various compo-
nents of the decay chains are born and decay. The rates
of growth and decay of radioactive isotopes in such mixed
samples is governed by a set of first-order linear differen-
tial equations. Analysis of the variations of the counting
rates of the various activities in light of these equations
and their solutions can yield measures of the mean lives
and relative abundances of the various nuclides.

A full exposition of the differential equations that de-
scribe the growth and decay of activities, the so-called
Bateman equations, is given by Evans [1955], pp 470 –
510. Here we consider only the two simple cases that
will be of greatest use in planning and analyzing your
measurements. The fundamental law of radioactive de-
cay is that at any instant the change, dA, in the number
of atoms of any given radioactive nuclide in a time inter-
val, dt, is proportional to the number, A, present at that
particular instant times dt, i.e.,

dA/dt = −A/τA, (4.1)

where τA is a constant characteristic of the nuclide. In-
tegration of this equation leads immediately to the ex-
pression, previously cited, for the number at any time t,
namely

A(t) = A0e
−t/τA , (4.2)

where A0 is the number present at t = 0. Now consider
the relations between the activities (decays/second) of
two radioactive isotopes, A and B, such that B arises
from the decay of A. Let A(t) and B(t) represent the
numbers of atoms of the two isotopes present at any given
time, A0 and B0 the numbers present at t = 0, and τA
and τB their mean lives, respectively. The rates of decay
are A/τA and B/τB . As before, equation 4.1 describes

1 1 Ci = 3.7× 1010 disintegrations s−1
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the change of A. The rate of change of B is the algebraic
sum of the rates of build-up and decay of B,

dB/dt = A/τA −B/τB . (4.3)

Equations 4.1 and 4.3 are simultaneous, first-order, dif-
ferential equations that must be solved subject to the
initial conditions. The general solution to equation 4.1
is equation 4.2. The general solution of equation 4.3 is
given by the sum of the solution of the homogeneous
equation, which is identical in structure to equation 4.1
and therefore has the solution Bh = fhe

−t/τB where fh
is any constant, and a particular solution. To find the
particular solution, we use the homogeneous solution as
a bootstrap and set Bp = fp(t)e

−t/τB (this is the method
of variation of parameters). Substituting Bp for B and
the solution for A in equation 4.3 and rearranging, we
obtain for fp the differential equation

dfp/dt = (A0/τA)e−t(1/τA−1/τB). (4.4)

Integration of equation 4.4 and imposition of the initial
condition B(t = 0) = Bh(t = 0) +Bp(t = 0) = B0 yields
the solution (for τB 6= τA)

B(t) = B0e
−t/τB +A0

τB
τA − τB

[e−t/τA − e−t/τB ]. (4.5)

One form of equation 4.5 is of special importance to
the interpretation of data from this experiment. Suppose
B0 = 0, τA � τB and t� τA. Then the rate of decay of
B is

rB(t) = B(t)/τB ≈ [A0/τA][1− e−t/τB ]. (4.6)

Under these circumstances the decay rate of B rises
from zero and approaches asymptotically the decay rate
of A.

These simple analyses provide us with at least two
means of determining a nuclide’s lifetime:

1. One can derive an estimate of τB as the negative
slope of a plot of ln[rB(t = ∞) − rB(t)] against t.
The diffusion of radon out of uraninite rocks occurs
at a nearly steady rate and can be considered the
equivalent of production by radioactive decay of a
very long-lived precursor.

2. A second way to determine τB is to turn off the
supply of B after its decay rate has reached a re-
spectable value. Then the B rate will simply de-
cline according to

rB = (B0/τB)e−t/τB . (4.7)

When a nuclide is third or later in a decay chain, the
equation describing its decay rate is more complex, and
interpretation of the variation of an observed decay rate
in terms of its mean life becomes more difficult or im-
practical. If the mean lives of the secondary nuclides in
the chain are short compared to τA, and if one waits for
a time long compared to any of those mean lives, then a
steady state is approached in which all of the decay rates
are the same and equal to A0/τA.

4.1. Numerical Solutions to the Bateman
Equations

In spite of the complexity of the analytical solution,
a set of differential equations for a multi-nuclide decay
chain is readily solved by numerical integration with re-
sults that can be displayed as plots of the various decay
rates against time.

Expressed using matrices, the Bateman equations are

dN

dt
= ΛN, Λ =




−λ1
λ1 −λ2

λ2 −λ3
. . .

. . .



. (4.8)

N is the nuclide number row vector, with the parent
nuclide the first entry. Λ is the decay constant matrix
(λi = 1/τi). The solution to this matrix differential equa-
tion, for initial conditions N0, is analogously given by the
matrix exponential,

N(t) = eΛtN0, (4.9)

where the matrix exponential is defined by the Taylor
expansion of the exponential,

eΛt = 1 + Λt+
(Λt)2

2!
+

(Λt)3

3!
+ · · · , (4.10)

and we can check that it solves equation 4.8 by substi-
tution. Although we now have an elegant solution that
is similar in form to the single-nuclide solution, calculat-
ing the matrix exponential numerically is computation-
ally intensive. Using matrix algebra, equation 4.9 can be
simplified for computational purposes. Since Λ is trian-
gular, its eigenvalues are the main diagonal elements, the
negatives of the decay constants. Let D = diag{−λi} be
the matrix of eigenvalues. Then Λ is diagonalized by the
matrix of eigenvectors, V, as follows2,

2 The reasoning for this theorem is easy to understand with a
fundamental understanding of eigenvectors and eigenvalues. If



Id: 45.alphadecay.tex,v 1.150 2011/09/02 20:43:01 rfoote Exp 138

ΛV = VD =⇒ Λ = VDV−1 (4.14)

Next, we express the matrix exponential eΛt in terms
of D3,

eΛt = eVDV−1t = VeDtV−1. (4.20)

This is a great computational improvement because
the matrix exponential of a diagonal matrix is easy to cal-
culate (this, again, can easily be seen from equation 4.10),

eDt =




e−λ1t

e−λ2t

e−λ3t

. . .




(4.21)

. The new equation for N(t), substituting from
Eq. (4.20), is

N(t) = VeDtV−1N0, (4.22)

and can easily be implemented in a program such as
MATLAB. See Appendix ?? for details.

V contains the eigenvectors of Λ, then ΛV is analogous to the
left side of the familiar eigenvalue equation Axi = λixi for each
of the eigenvectors. Similarly, VD is analogous to λixi. The
following illustration may make this easier to follow:

ΛV = VD (4.11)

Λ


...

...

x1 x2 · · ·
.
..

.

..

 =


...

...

x1 x2 · · ·
...

...



λ1

λ2
. . .

 (4.12)

Λ


...

...

x1 x2 · · ·
...

...

 =


...

...

λ1x1 λ2x2 · · ·
...

...

 (4.13)

which is merely Λxi = λixi i times over.
3 That eVDV−1t = VeDtV−1 can easily be seen from the defi-

nition of the matrix exponential in equation 4.10,

eVDV−1t = eVDtV−1
(4.15)

= 1 + VDtV−1 +

(
VDtV−1

) (
VDtV−1

)
2!

+ · · ·
(4.16)

= VV−1 + VDtV−1 +
V (Dt)2 V−1

2!
+ · · · (4.17)

= V

(
1 + Dt+

(Dt)2

2!
+ · · ·

)
V−1 (4.18)

= VeDtV−1. (4.19)

0 100 200 300 400 500 600 700 800 900
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

18
Isotope Activity, Bateman Equations (N

0
 = 1 mol τ

1/2
 = 105 sec)

Time (sec)

A
ct

iv
ity

 (
ev

en
ts

 / 
se

c,
 B

q)

 

 

τ
1/2

 = 105 sec

τ
1/2

 = 10 sec

τ
1/2

 = 103 sec

FIG. 2: Plot of the activity in becquerels (events / sec)
versus time for a hypothetical decay chain consisting of
isotopes with half lives τ1/2 = 105 sec, 10 sec, and 102

sec. In time of the order of the length of the half lives,
it comes to equilibrium – each isotope carries

approximately the same activity. This was seen directly
in equation 4.6.

5. Experimental Overview

The Junior Lab experiment in alpha-decay consists of
two different types of alpha-spectrometers:

1. A Beckman liquid scintillation detector. This ap-
paratus is principally used for the determination
of the lifetime of Rn222, though with a certain
amount of skill it can also be used to measure the
much shorter lifetime of Po218 as well (described
in Section 7.1). The lifetime of Po214, heralded
by the birth of a Bi214 atom, can be measured
using delayed coincidence techniques described in
Section 8.1.

2. A Solid-State Spectrometer based around a “Pas-
sivated Implanted Planar Silicon” or “PIPS” de-
tector4. The lifetimes of all other nuclides can be
measured with the PIPS based alpha-spectrometers
(described in Section 6). The lifetime of Po212 is
measured using coincidence techniques described in
Section 9.3 with the assistance of a plastic scintil-
lator to detect beta decays.

There are two sources for alpha-particle emitting iso-
topes in this investigation. The first is a very (chemically)
stable compound called triuranium octoxide (U3O8),
which is the end product of the oxidation of Uraninite
(UO2) in air (we will refer to it as uraninite for simplic-
ity). These ‘rocks’ live in metal cans in the lead box in
the fume hood. They should never be removed from the
cans. They are used with the PIPS detectors. The other

4 Canberra model A450-20AM from canberra.com

canberra.com
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source is the tube of radium-226 salts. It emits radon-222
gas which is ‘bubbled’ into scintillator fluid for use in the
Beckman apparatus.

5.1. Suggested Experiment Schedule: Overview

Day 1. 1. Section 6.3: Seal a can containing urani-
nite rocks with a rubber stopper in which a
certified “good” alpha particle detector is em-
bedded. Apply a voltage (∼ 450V) between
the can and lab ground so as to draw to the
surface of the detector positive ions of decay
products from radon isotopes leaking out of
the rocks. Make sure the ground termi-
nal of the floating 450V power supply is
connected to earth ground using an al-
ligator clip to the side of the NIM bin!
Record the energy spectra of the alpha parti-
cles. With the help of your charts from the
preparatory questions, identify the features in
the energy spectra and explain the shapes of
the lines.

2. Section 7.1: Prepare a sealed sample of
radon in liquid scintillator and initiate a mea-
surement of the relatively long mean life of
Rn222 and attempt to measure the short life-
time of Po218. Conduct at least two runs:
a “trial” run to familiarize yourself with the
apparatus, and a second with all the “bugs”
worked out.

Day 2. 1. Section 6.4: Determine the mean lives of
various alpha and beta activities by measuring
changes in counting rates measured with the
silicon detector.

2. Measure the alpha decay activity in the liq-
uid scintillator with the Beckman spectrome-
ter and record the date and time.

3. Suggested Progress Check for end of
2nd Session: Plot an alpha particle spec-
trum (∼ 10 minute integration) with the x-
axis in calibrated units of energy. All of the
peaks should be identified with energy, par-
ent nucleus and half-lives obtained from the
literature.

Day 3. 1. Section 8.1: Measure the short mean life
of Po214 by the delayed coincidence method
using the Beckman spectrometer coincident
circuit to detect the precursor beta decays of
bismuth.

2. Measure the alpha decay activity in the liquid
scintillator.

Day 4. 1. Section 9.3: Measure the very short
mean life of Po212 by the delayed coincidence
method using the auxiliary plastic scintillation

counter to detect the precursor beta decays of
bismuth.

2. Refine whatever parts of the experiment need
additional attention.

3. Measure the remaining alpha decay activity in
the liquid scintillator.

6. Solid-State Spectrometer Experiment

The sample of U3O8, consisting of a few small rocks
(∼ 70 g), is contained in a can which will be assigned
to you for the duration of your experiment. The PIPS
detectors are expensive and extremely delicate so take
great care not to let anything touch the surface of the
detector. The rocks leak radon gas which can be trapped
in the can by sealing it with the rubber-stopper in which
the detector is mounted. Jostling of the rocks within the
cans has, over time, produced small quantities of dust so
be careful not to spill any small particles when observing
the sample. The can setup is illustrated in Figure 3.

In this experiment samples of such generically related
nuclides are created on the surface of the silicon detec-
tor. Each alpha-decay process involved in a decay chain
reveals itself as a distinct peak in the energy spectrum,
and its rate can be measured by appropriate manipula-
tion of the recording sequence. Thus all the necessary
data for an exploration of the energy-mean life relation
in alpha decay can be obtained with this one “simple”
device. One can imagine that Lord Rutherford, in 1905,
would have given his eyeteeth for such a detector to re-
place the ion chambers, cloud chambers, calorimeters,
and spinthariscopes he used in his discoveries.

When a radon atom suffers alpha decay, the daugh-
ter polonium atom recoils with sufficient velocity to have
several of its outer electrons stripped in collisions with
air molecules. An electric field, established by applica-
tion of high voltage (∼ 450 VDC) between the can and
the detector, draws the polonium ion to the surface of
the detector where it sticks. Its subsequent decay and
the decays of its daughter nuclides yield alpha and beta
particles. If an alpha particle from an atom stuck on
the detector surface is emitted in a direction into the de-
tector, then nearly all of its energy will be dissipated in
the sensitive volume of the silicon where the number of
electrons raised to the conduction band is almost exactly
proportional to the dissipated energy. The conduction
electrons are swept out of the silicon by the field estab-
lished by the bias voltage (∼ 40 VDC) applied to the
detector. The resulting charge pulse is detected by the
preamplifier as a voltage pulse which is amplified and
analyzed with a multichannel analyzer (MCA) card.

6.1. Multi-Channel Analyzer

The distribution in amplitude (pulse-height spectrum)
of pulses from a detector-amplifier combination or per-
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haps from a Time-to-Amplitude Converter (TAC) is
conveniently measured with a 2048 channel MCA card
mounted in the computer. Details of the MCA operation
can be found on the web in the Junior Lab E-Library and
in the photocopied manual next to the experimental sta-
tion. These cards allow full software control over upper
and lower level discrimination voltages, have a coinci-
dence (gated) detection mode, and offer a simple set of
tools for establishing energy calibrations and determining
peak statistics. With a slight amount of additional effort,
the Maestro-32 control software may be programmed us-
ing simple, text-based, .job files to automate repetetive
measurements with precision. This technique is outlined
in appendix B.

Po+
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FIG. 3: Schematic diagram of the metal can containing
uraninite, sealed by the rubber stopper carrying the

silicon barrier detector, and attached to the high
voltage supply. A polonium ion is shown as it is about

to be drawn to the detector by the electric field.

You will be assigned a silicon barrier detector and a
can containing a sample of uraninite rocks for your exclu-
sive use during this experiment. The mixture of decaying
nuclides stuck on the surface of the detector depends on
the history of its exposure to the decay products of radon
that emanates from the uraninite rocks, and on the com-
positions of the particular uraninite rocks. Therefore it
is essential that you control the exposures for your own
purposes during the two-weeks of the experiment. You
will find a lot of things going on in the can and on the
surface of the detector that are not explicitly mentioned
in this lab guide. To figure out exactly what is going
on you will have to keep a meticulous timed and dated
record of your manipulations and observations.

CAUTION

Precursor nuclides of all the activities studied in this
experiment are isotopes of the noble gas, radon, which

diffuse at steady rates out of the rocks in the can. The
nuclides drawn to the surface of the detector by the im-
posed electric field are the isotopes of polonium (Po215,
Po216, and Po218) which are the decay products of those
radon isotopes. Therefore, to initiate a useful amount of
the action that follows deposition of one of those polo-
nium isotopes on the detector surface, there must be an
adequate activity of its parent radon isotope in the gas in
the can when you apply the high voltage, and the voltage
must be left on for a time of the order of the longest-lived
nuclide in the subsequent chain leading to the isotope un-
der investigation. For example, if you want to study the
rapid decay of Po212, you must accumulate its 10.64-hour
precursor Pb212 on the surface of the detector for a day
or more with the high voltage on.

To study the decay of Po218, you will need to keep the
can sealed for a couple of days to accumulate the long
lived precursor Rn222 gas that leaks from the rocks. Its
activity will build toward its equilibrium value in propor-
tion to the function 1− e−t/τ where τ is its mean life of
about 3 days. If you open the can, the radon will
escape, and you will have to wait for a time of the
order of τ for the activity to build up to a useful
value again. When you have enough of the gas in the
can, you can measure the meanlife of its daughter nuclide
Po218 by turning on and off the high voltage applied to
the can. In the case of Rn219 and Rn220 radon isotopes,
those times are of the order of minutes and seconds. So
THINK before you open your can.

Additional information about some of the devices can
be found in Melissinos [1966] and in the equipment man-
uals. There are three power supplies used in this ex-
periment. Costly damage can occur if they are inad-
vertently interchanged. The Ortec Model 428 Detector
Bias Supply provides the low (∼ 40V) voltage to the Sil-
icon Barrier Solid State Detector. This supply should
be connected to the ‘HV’ input on the Canberra Model
2003BT preamplifier. The second supply is housed in a
black plastic box and provides ∼ 425 VDC for biasing
the can containing the uraninite with respect to the solid
state detector, causing polonium ions to be attracted to
the surface of the detector. The third supply provides
high voltage to the photomultiplier of the scintillation
counter used to detect beta-decay electrons emanating
from the nuclides deposited on the surface of the Silicon
Detector.

6.2. Silicon Barrier Solid State Detector

When a charged particle dissipates an amount of ki-
netic energy, K, in the sensitive volume of a solid state
detector, an average of K/ε valence electrons are raised
to the conduction band and swept out by the bias field
to form a pulse of negative charge. In silicon ε ≈ 3 eV,
so an alpha particle with an energy of several MeV pro-
duces a charge pulse containing so many electrons that
the fluctuations are a negligible source of width of a line
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in a typical alpha energy spectrum — the actual line
width ∆E depends on the quality of the detector, and
in a good detector it should not exceed ∆E ≈ 0.01E.
The solid state detector is connected to a preamplifier
through which the bias voltage (<∼ 50V!) is supplied to
the detector, and in which the voltage induced by the
charge pulse at the gate of an input field-effect transistor
is amplified before passing to a second amplifier and on
to a MCA for pulse-height analysis (the physics of solid
state detectors is described in Melissinos, 1986.)

6.3. Day 1: The Energy Spectra of Alpha Particles
from the Decay Products of Uraninite Emanations

The silicon detector assigned to you has probably been
exposed recently to alpha emitters of which not all have
decayed to negligible levels of activity. You can use the
residual activity to test the detector and spectrum anal-
ysis equipment, and to adjust the gains of the system to
achieve a convenient spread of the spectral lines (0 – 10
MeV) with good linearity.

Connect the detector and other components as shown
in Figure 4, except do not turn on or connect the
detector bias voltage supply. Place the detector in
its rubber stopper face down on the table and cover it
with a black cloth (so that room light does not strike the
surface when the ∼ 40 VDC bias voltage is applied). Set
the MCA lower level discriminator (in software) to ∼ 200
channels to eliminate detector noise (to check, make sure
that the dead time when you’re taking spectra is hovering
around 0.6% and 0%).

Turn on the Ortec 428 bias supply, set it to +40 VDC
and measure the voltage at the SHV connector before
connecting to the preamplifier’s bias voltage input (the
Ortec 428 dial is a rather coarse control and you want
to be sure not to exceed the manufacturer’s maximum
voltge recommendation at the risk of destroying the (ex-
pensive) detector.

After setting up the scope trigger and gain, adjust the
spectroscopy amplifier so that the highest-energy pulses
occur at ∼ 8 VDC (if there is no scope, just try to make
it match up to MCA channel ∼ 800). Beware, you may
be plagued by 80MHz rf pickup, probably from the MIT
FM radio station broadcasting over the MIT 110V power
line!) Record all the settings of all the components in
your setup so that you can reestablish the same measure-
ment conditions in your next lab session.

1. Record a 300 sec spectrum with the MCA mem-
ory with the detector face down on the table (and
covered with a black cloth).

2. Seal your can with your stopper/detector. Record
a second 300 sec spectrum with no high voltage
applied to the can. Compare this spectrum with
the one you obtained with the detector face down
on the table.

Analyzer
MultichannelAmplifier

Oscilloscope

Detector
Alpha-Particle
Canberra PIPS

+40VDC
Detector Bias Supply

Canberra 2003BT
Preamplifier

FIG. 4: Arrangement of components for measuring the
energy spectra of alpha particles from nuclides

deposited on the surface of the detector.

3. Connect the high voltage (∼ 425 V) power supply
in black plastic box between the can and lab ground
and record a third 300 sec spectrum.

4. Reverse the voltage and record a fourth 300 sec
spectrum.

Try to understand everything you see in these four
spectra. Ask for advice if there are mysteries you can’t
solve. Record a 30-minute spectrum with ∼ 425 V ap-
plied to the can with the polarity that produces the most
action.

While you are waiting, get started on the long-term
measurement of the mean life of Rn222 with the liquid
scintillator, described in Section 7.1. You will need to
get data over several days, so it’s wise to start early on
this measurement.

After initiating the Rn222 measurements, return to
the silicon detector experiment and measure the chan-
nel numbers of all the peaks of the one-hour spectrum.
With the aid of the chart of the nuclides (located on
the wall above the experiment), your preparatory ques-
tion answers and [1], identify the peaks and explain their
shapes. Do you see evidence of the famous high-energy
alphas from Po212? If so, estimate their energies and the
fraction of the decays that give rise to them.

• Try to explain any discrepancies between the spec-
trum of pulse heights you have observed and their
expected energies (e.g. consider the effect of a
thin coating of protective material or dust over the
source or the detector.)

• In light of the likely age of the uranite source and
the opportunity it has had to achieve equilibrium
among the quantities of its radioactive decay prod-
ucts, try to explain the inequalities you may see in
the intensities of the various alpha particle groups.

At the end of the first lab session, keep your can
sealed with the stopper/detector and connect your high-
voltage box between the can and the shield of the BNC
connector with the appropriate polarity to draw the polo-
nium ions to the detector. This will build up a supply
of radioactive nuclides in the gas in the can and on the
surface of the detector for analysis at your next session.
Note the time in your lab notebook.
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6.4. Days 2 and 3: Determination of the Mean
Lives of Several Nuclides

In preparation for your second session, devise a plan for
the determination of the mean lives of as many nuclides
as possible with data that you will be able to obtain from
the setup used in the first session. Base your plans on
the possibilities of measurement implied by equations 4.6
and 4.7 above. There are two alpha decays and two beta
decays whose mean lives can be measured by appropriate
manipulations with the silicon detector.

Consider:

1. Disconnecting the high voltage and measuring the
decay of the nuclides stuck on the detector surface

2. Reconnecting the high voltage and measuring the
build up of activities

3. Flushing the accumulated radon out of the can with
nitrogen, sealing the can, and then measuring the
build up of activities as radon accumulates in the
gas in the can.

You may want to consult your instructor about your
strategies.

Do not break the hermetic seal of your can and
let the accumulated radon escape before you have
extracted all the useful information from the state
of things that exists after a long accumulation of
radon in the can. Restore the settings of the measure-
ment chain you established in the first session. Use the
MCA to record the spectra and, for your convenience in
analysis, make whatever fine adjustments of the amplifi-
cation may be necessary to bring the highest energy peak
into the same channel as before.

Record a 30-minute spectrum for comparison with the
one you recorded in the first session.

Now proceed with the strategy you have devised to
measure the mean lives of as many of the activities as
you can.

7. Liquid Scintillation Detector Experiment

The Beckman scintillation detector consists two pho-
tomultiplier tubes (PMTs) that view the flashes of light
in the liquid scintillation cocktail contained in a sample
vial placed between them. Particle energy dissipated in
the scintillator produces a flash of blue light at a rate
of about one photon per 30 eV. Some of the light is ab-
sorbed by the metallic coating on the inside of the glass
window of the PMT causing emission of a burst of pho-
toelectrons. The photoelectrons enter a series of dynode
stages (electron multiplier) from which an amplified burst
of electrons emerges to be measured as a pulse of charge
proportional to the amount of light in the scintillation
flash.

Liquid scintillation cocktails are generally xylene or
other organic liquid with a small quantity of dissolved
complex aromatic hydrocarbon. A liquid scintillator con-
verts into visible light about 1% of the energy lost by an
energetic electron traversing the liquid. Thus a 1 MeV
electron that stops in a liquid scintillator by virtue of
energy loss due to ionizing collisions with carbon and hy-
drogen atoms yields a flash of several thousand photons
(∼ 1 visible photon per 100 eV of energy loss) which is
readily detected by a PMT. The liquid scintillator is also
an efficient detector of alpha particles. However, the rate
of energy loss along the path of a stopping alpha particle
is so great that the conversion capacity of the aromatic
molecules is saturated and only about 0.1% of the ion-
ization energy is converted into optical photons. While
the commercial liquid scintillator (Ultima Gold)
used in Junior Lab is not particularly dangerous,
please wear gloves and note the safety precautions
listed on the Material Safety Data Sheet (MSDS)
posted by the hood.

Figure 5 is a schematic diagram of the Beckman liquid
scintillation spectrometer. It has a light-tight, radiation-
shielded counting chamber and associated electronics to
supply power and process signals. In the chamber are
two PMTs that view a platform on which a sample of
liquid scintillator can be lowered for counting. The plat-
form is raised and lowered through a light-tight shutter
by an electromechanical elevator. The outputs from the
PMTs are amplified and fed to an addition circuit and a
coincidence circuit contained in a chassis mounted by the
side of the chamber. The output of the addition circuit
is a negative 0 ∼ 1V pulse proportional to the sum of
the amplitudes of the signals from the two PMTs pro-
duced by a single scintillation event. The output of the
coincidence circuit is a positive 5V logic pulse produced
whenever two pulses above a certain minimum size arrive
nearly simultaneously from the two PMTs. Dark current
pulses from the PMTs are random and uncorrelated, so
the chances of their occurring in two PMTs within the
resolving time of the circuit is small. On the other hand,
a faint scintillation event that produces enough light to
cause one or more photoelectrons to be ejected from each
of the two photocathodes will yield pulses that are simul-
taneous within the decay time of the phosphor, which is
on the order of 10−8 sec. Thus the coincidence logic sig-
nals are a very sensitive indicator of the occurrence of
faint scintillation events, though they do not carry am-
plitude information.

You will determine the mean life of Po218 by measur-
ing the rapid growth (minutes) of its radioactivity in a
freshly prepared sample of Rn222, and the mean life of
Rn222 from the slow decay products. You will have to
work rapidly at the beginning of this measurement in or-
der not to miss the early stages in the build up of the
Po218 activity (you studied how quickly in preparatory
question 3). Study the following procedure before you
begin. Make up a data table in your lab notebook
to record the times (starts and durations), the
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FIG. 5: Schematic diagram of the Beckman instrument
for measuring the scintillations from alpha decays in the

liquid scintillator.

number of counts, and your comments. You will
be using the the Ortec 872 Counter / Timer to produce
simple counts of activity in the vial.

7.1. Measuring Mean Life of Rn222 and Po218

This experiment, as explained in the overview section
5.1, should be started on the first day after setting up
the “can” to begin accumulating decay products.

Radon is a closed shell atom, the heaviest in the se-
quence of noble gasses which begins with helium. Formed
in the earth’s crust by the decay of radium, radon diffuses
into the atmosphere to become part of the air we breathe.
Radon in the environment is now recognized as the ma-
jor source of ionizing radiation to the general population.
There is a concerted effort by federal and local agencies
to mitigate “high” radon levels found in some homes. We
place the quotes around “high” to emphasize that the ad-
jective is appropriate only for very long term exposures to
the general population. The radon intensities of concern
in the environment are measured in picocuries, which is
a millionth the source strength of the radioactive sources
used in smoke detectors or the calibration sources we use
in the laboratory. The radioactivity of the radon sources
used in the present experiments are very weak and pose
no health hazard.

A radon source is mounted in the back the chemi-
cal fume hood as a sealed-Pylon flow-through radium
(Ra226) salt cylinder which emits gaseous radon as it de-
cays. Therefore using a series of pumps and valves the
gas is safely extracted and made into a liquid scintilla-
tion cocktail. The liquid scintillation fluid used, Ultima
Gold, which the radon is deposited directly into. This
cocktail, or sample, will house all beta and alpha decay
events that can be detect via the Beckman counter for
this portion of the experiment.
Helpful Note: The maximum activity of radon atoms
in equilibrium with one mole of uranium is 6.03 × 1023

mol−1/τU238 disintegrations s−1, where τU238 = 6.5× 109

yr is the mean life of uranium.

7.1.1. Liquid Scintillation Detector: Procedure for Rn222

and Po218

Be sure to re-read your answer to prepatory question 3
so that you have a better idea of when to take spectra.

A solution of radon (Rn222) in liquid scintillator will
be made for use with this detector. The sample will be
hermetically sealed in a glass vial in which the alpha-
decay activity of Rn and its shorter-lived decay products
can be assessed from time to time over the next several
days with the Beckman scintillation spectrometer. To
prepare a liquid scintillation sample:

1. Ensure that the radon deposition valve is com-
pletely closed (turned all the way to the right).

2. Pump 10 cc (or 10ml) of liquid scintillator from the
reservoir (Ultima Gold) into glass vial.

3. Locate the mounted radon source in the back of
the fume hood and open both valves (top and bot-
tom)completely to allow for gas flow.

4. Turn on Peristaltic Pump, adjust deposition rate
to be between 50-55% and begin pumping Rn gas
FORWARD , or >>.

5. Place radon deposition tubing into prepared scin-
tillation vial and open deposition valve. Bubbling
should be seen in the fluid to verify gas flow!

6. Bubble for 30-45s.

7. Shut off deposition valve first then quickly seal vial.

8. Continue by shutting off peristaltic pump and close
valves (top and bottom) on the radon source in the
rear of the fume hood.

To prevent false results due to radon leaking from the
vials, it is essential that they be hermetically sealed. You
can improve the seal by applying vacuum grease (or vase-
line) to the rim of the vial and capping it tightly so the
radon does not leak out during the several days required
for the measurements. Lower the vial into the counting
chamber and immediately start a sequence of measure-
ments with the Counter / Timer, appropriately spaced in
time so as to define accurately the build up of the Po218

activity. Team work is necessary in order to start mea-
surements in the Beckman spectrometer as soon as the
sample vial is closed.

After taking the quick spectra for Po218, think about
your preliminary results and how you might obtain im-
proved data on your second run. Make a practice run to
familiarize yourself with the procedure and to make any
needed adjustments of the electronics. Make a second
run for a good set of data. Each team should attempt to
get at least two good sets of data.

After you have completed the comparatively rapid se-
ries of measurements required for a determination of the
Po218 mean life, you can turn your attention to the much
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more gradual process of the decay of the parent nuclide
itself, i.e. Rn222. Since the mean life of radon is several
days, you will have to follow the decay of your sample
for several days or a week to get accurate results. Here
you must overcome three problems. The first is that the
beta activities of Pb210 and Bi210 and the alpha activity
of Po214 will continue to grow for several hours before
they reach the equilibrium condition of being equal to
the acitivities of Rn222 and Po218. Since you cannot iso-
late the counts due to Rn222, any rate you measure will
be influenced by these other activities. The best thing to
do, therefore, is to wait until all the activities are nearly
equal (a couple of hours). Then any counts will give you
a rate proportional to the Rn222 activity from which you
can determine the mean life. The other problem is the
possible leakage of the radon gas from the vial.

7.1.2. Liquid Scintillation Detector: Analysis for Rn222

and Po218

Given the follwing facts:

1. The mean life of Po218 is much shorter than that
of Rn222,

2. The mean lives of the Po218 decay products that
lead to the production of alpha-active Po214 are
long compared to the mean life of Po218,

3. Some Po218 may be dissolved in the liquid scintil-
lator along with Rn222,

one can show that the measured counting rate r(t) is
represented to a good approximation by a function of
the form

r(t) = a− be−t/τ (7.1)

where a, b and τ are constants. Thus

ln[a− r(t)] = ln b− t/τ (7.2)

The constant a is the total counting rate that is ap-
proached asymptotically by the two alpha activities at
times much longer than the mean life of Po218, but still
much less than the mean life of Rn222. It can be esti-
mated from an examination of a plot of r vs. t. A plot of
ln[a − r(t)] vs. t during the first few minutes should be
nearly a straight line with a slope of −1/τ where τ is the
mean life of Po218. (Note: as r approaches a, statistical
fluctuations will cause wild gyrations or worse in the val-
ues of ln[a − r], so the most useful information about τ
must be derived from the early part of the rising curve
of activity.

Additional questions:

1. Describe how the pulse height spectrum changes
with time.

2. Identify the part of the pulse height spectrum due
to the beta decays of Pb214 and Bi214.

3. What is the effect of the accumulating radionuclide
Po210 on your results?

8. Measuring Lifetimes of Short-Lived Species

A technique particularly well suited for determining
the mean life of very short-lived species is to use the
decay event that gives birth to a particular nuclide as
a start signal for a time-to-amplitude converter (TAC),
and the decay event of the nuclide as the stop signal. The
distribution of time intervals between the start and stop
signals is the decay curve of the nuclide. This method will
be used to measure the mean lives of Po214 and Po212.
Po212 may be measured using the output of the Beck-
man’s coincidence circuitry as described below.

8.1. Determination of the Mean Life of Po214

Po214, produced by the beta-decay of Bi214, has mean
life less than 300 microseconds. Its decay curve is mea-
sured with the help of the Time-to-Amplitude Converter
(TAC). During the third day of the experiment, you will
determine the mean life by measuring the distribution in
duration of the time intervals between the scintillation
pulse produced by the beta decay of a Bi214 nucleus into
a Po214 and the subsequent scintillation pulse produced
by the 7.6 MeV alpha particle from the decay of the Po214

nucleus.

8.1.1. Procedure

Use an eluted radon source that has aged sufficiently
to bring the rate of Po214 decays up near to equilibrium
with the rate of Rn222 decays. Set up the electronics as
shown in Figure 6. An inverter is required because the
TAC is wired to only trigger on negative signals.

The +5 VDC logic pulses from the coincidence out-
put from this timing measurement offer the critically
important advantage that they are produced only when
pulses occur simultaneously in the two phototubes, as
mentioned above. In order to detect with reasonable effi-
ciency, the weak pulses due to the beta decays that pre-
ceded the alpha emissions, it is necessary to accept small
scintillation-produced pulses, which, in the absence of a
coincidence requirement, would be lost in the forest of
dark current pulses created by the thermionic electrons
spontaneously and randomly emitted by the photocath-
odes of both tubes. The inverted +5 VDC logic pulses
are fed directly to both the stop input of the Ortec TAC
and to the delayed gate generator. The negative pulses of
the delayed gate generator are in turn fed to the start in-
put of the TAC. The TAC range should be set to several
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FIG. 6: Experimental arrangement for measuring the short mean life of Po214. The inverter is necessary because the
TAC will take only negative signals as inputs. Scintillation light from a decay event strikes both PMTs and causes

simultaneous pulses that trigger the coincidence circuit.

multiples of the expected nuclide lifetime. The output of
the TAC plus MCA combination records the time inter-
val between each delayed start pulse and the next stop
pulse, provided the interval is within the allowed range
of the TAC. Delaying the start pulse relative to the stop
pulse by several microseconds prevents the timing action
of the TAC from being stopped by the same pulse that
starts it. A high delay will result in the loss of events,
however, so make sure you keep it suitably low. Cal-
ibrate the TAC with pulses from the Time Calibrator,
though you should note that the longest range possible
is only about 10% of the TAC’s range. The TAC and
MCA are both very linear devices however, and you can
extrapolate this calibration throughout the entire range
of the MCA display. In a related measurement of the
mean life of Po212, we employ a different detector combi-
nation to detect the birth and death of the Po212 nucleus.
The sensitive layer of the silicon detector is too thin to
yield a usable start pulse from the lightly-ionizing elec-
trons emitted in the beta decay of the precursor bismuth
nuclei. Therefore it is necessary to employ a separate
detector, a plastic scintillation detector with a thin win-
dow, to detect the beta-decay electrons that signal the
birth of the short-lived polonium nuclei.

9. Measuring the Mean Life of Po212

9.1. Plastic Scintillation Counter

Beta-decay electrons emitted by the atoms plastered
onto the silicon detector surface will be detected by a
scintillation detector with a plastic scintillator in an ar-
rangement shown schematically in Figure 7. The plastic
scintillator is covered with a thin aluminum foil which is

readily traversed by the beta-decay electrons. Informa-
tion about the wiring and operation of a photomultiplier
can be found in Melissinos [3].

9.2. Time-to-Amplitude Converter/Single Channel
Analyzer (TAC/SCA)

The Ortec Model 567 Time-to-Amplitude-Converter
(TAC) is used to convert the time intervals between
pulses at the “start” and “stop” inputs into the ampli-
tudes of output pulses. If a start pulse is generated in
the plastic scintillator by a beta decay event heralding
the birth of the radioactive nuclide Po212, and the stop
pulse is generated in the silicon detector by its decay, then
the distribution in amplitude of the TAC output pulses
will be proportional to the distribution in duration of the
lifetimes of the Po212 atoms.

The polarity of the start and stop pulses is set us-
ing internal jumpers and the threshold for the negative
and positive positions are ∼ −400mV and ∼ 2V respec-
tively (it is currently set to negative and will stay that
way throughout the experiment). The SCA feature of
the Ortec 567 is enabled by flipping the toggle switch
adjacent to the output jacks. It will inhibit the TAC
output except for pulses with amplitudes that fall within
the “window” set by the lower and upper discriminator
dials. Within that window the TAC output remains pro-
portional to the start-stop time intervals. For each pulse
in the window, a +5 VDC logic pulse is generated at the
SCA output. In this part of the experiment, it may be
useful to use the SCA logic pulse to gate the MCA in
an analysis of the amplitudes of pulses from the ‘sum’
output of the Beckman scintillation detector in order to
identify which of the alpha particle groups is associated
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FIG. 7: Schematic diagram of the scintillation counter with the silicon detector in place.

with the very short lived (∼ 100µs) nuclide.

9.3. Procedure

The mean-life of Po212 is very short. However, it can be
measured by taking advantage of the fact that each birth
of a Po212 atom is signaled by emission of an energetic
electron in the beta-decay of its parent Bi212 nucleus.
The setup employs a scintillation detector covered by a
thin aluminum foil that can be penetrated by most of the
decay electrons. The silicon detector must first be plated
with sufficient precursors of Po212 by exposure to radon
gas in a can with the uraninite with the plating voltage
source connected (>∼ 1 day). Then it is placed in the
well of the scintillation counter so that electrons emitted
downward in the decay of the precursor Bi nucleus will
excite the scintillator. If the subsequent decay of the
daughter Po nucleus produces an alpha particle going
upward, the silicon detector will produce a pulse of the
characteristic energy of the alpha decay. The scintillation
pulse is used to start the timing sequence of the TAC,
then the silicon pulse is used to stop it. The output is
recorded by the MCA, from which the mean life can be
determined.

The rate of accidentals during the short lifetime of
Po212 is so small that no pulse-height selection of the
alpha pulses is necessary. Thus the setup shown in Fig-
ure 8 should work.

Recommended settings:

• Canberra 2021 Spectroscopy Amplifier:
coarse gain = 100, fine gain = 1, input polarity =
+, shaping time constant = 2.0 µs, mode = ASYM,
threshold = auto, output polarity = -

• Ortec 478 Power Supply: PMT Bias = +2000
VDC

• Canberra 814 PAD: coarse gain = 64, fine gain
= 10, amplifier input = +, preamp = IN, input to
the PREAMP IN, output from DISC OUT.

• Ortec 567 TAC: Set for a full scale timing range
of 2µs, set the TAC inhibit = OUT

You should set the discriminator on the PAD to elim-
inate the triggers from the PMT due to noise.

Caution: Cover the scintillation detector with
several layers of black cloth to stop light leaks.
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FIG. 8: Setup for measuring the decay of Po212. The time calibrator puts out negative pulses so the input switch on
the spectroscopy amplifier must be changed to negative for the calibration. The TAC is set to accept negative

signals which should have amplitudes greater than 2 volts.

10. Analysis

• Identify the parent nuclides in the uraninite.

• Identify all the nuclides whose alpha decays you
have observed.

• Explain the shapes of the alpha peaks, especially
the Po212 peak.

• Plot all the decay data and fitted decay curves, and
estimate the mean or half-lives with errors.

11. Determination of the Energy-Mean Life
Relation

The bottom line of this experiment is in the title: The
Quantum Mechanics of Alpha Decay. With the data in
hand on the energies and lifetimes of four nuclides of
the uranium family, you can display the energy-mean life
relation and contemplate the extraordinary dependence
of the decay rate on the barrier height and its explanation
in terms of the quantum theory of barrier penetration. Be
sure to re-read Section 3.1 when performing this analysis.

The analysis of your data on energies and mean lives
should be carried out with regard for the statistical un-

certainties. You should be able to determine the relative
energies of the alpha particle groups from the silicon bar-
rier detector data with uncertainties of less than 5% and
the corresponding mean lives to within 10%.

Plot the log of the mean lives versus the alpha particle
energies. Derive from your data a formula that expresses
approximately the Geiger-Nuttall relation between mean
life and energy.

Compare your experimental results with the expected
relation from barrier penetration theory.

12. Some Possible Theoretical Topics

Beyond the primary references cited earlier in the
labguide, there are many references to aid you in your
discussions of radioactivity, alpha and beta decay, etc.
Some include: [9–13].

• Barrier penetration and alpha decay.

• The Bateman equations.

• The relation between A and Z for nuclei stable
against beta decay.

• The energy loss of charged particles in matter.

[1] Tech. Rep., Nuclear Evaluation Lab and Korea Atomic
Energy Research Institution and Brookhaven National Lab-
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APPENDIX A: EQUIPMENT LIST

Manufacturer Description URL

Canberra PIPS α-particle detector canberra.com

Canberra 802 Scintillation Counter canberra.com

Canberra 2006 Charged Particle preamp canberra.com

Canberra Amplifier canberra.com

Ortec Inverting Amplifier ortec-online.com

Constant Fraction Disc.

Coincidence Unit

Ortec Multi-Channel Analyzer ortec-online.com

APPENDIX B: .JOB FILE TUTORIAL

This section attempts to summarize some of the im-
portant commands used in .job files to control the Ortec
MCA. It summarizes what can be found in detail in the
Ortec MCA manual, reference [14].

While one can manipulate the MCA manually, .job
files are powerful tools that allow students to acquire data
without constantly changing settings in the program. It
is highly suggested that students take full advantage of
this functionality in their studies.

1. .job File Glossary

CLEAR. Clears the data for the selected detector.

REM <remark>. Remark (comment).

SET BUFFER. Sets the buffer as the active detector.
Equivilent to SET DETECTOR 0.

SET DETECTOR <0|13>. Chooses the active detector.
The buffer detector is 0, and the alpha decay de-
tector is 13.

SET PRESET CLEAR. Clears the preset values for when to
stop recording. Accessed in Maestro via Acquire
→ MCB Properties → Presets.

SET PRESET COUNT <numcounts>. Sets the ROI number
of counts. Stops taking data when the number of
counts in any ROI channel reaches this value.

SET PRESET INTEGRAL <roiintegral>. Sets the ROI
integral. Detector stops taking data when the sum
of all counts in all channels marked with ROIs
reaches this value.

SET PRESET LIVE <livetimesec>. Sets the live time for
it to take data. Indicates amount of time the de-
tector was available to accept another pulse (not
busy). Real time minus dead time.

SET PRESET REAL <realtimesec>. Sets the real time for
it to take data. Indicates elapsed time on a clock.

LOOP <numtimes> ... END LOOP. Loops the indicated
number of times.

WAIT <intervalsec>. If called immediately after START,
waits until spectra is finished. Other intervals can
be specified as an argument with units of seconds.

DESCRIBE SAMPLE "<description>". Associates spec-
tra with indicated description. Description should
be enclosed in double quotes. ??? indicates the
loop number.

SAVE "<filename>". Saves file to indicated file name.
File name should be enclosed in double quotes. ???
indicates the loop number.

2. .job File Example

This .job file takes 30 spectra, each lasting 50 seconds,
and separated by 10 seconds each. This file can be found
at labguides/45.alphadecay/pipstestrun2010.job
in the 8.13 locker, or on the local machine via
C:\User\demojob.

REM Brian A. Wilt - 8/17/2006
REM Javier Duarte - edited 11/30/2010
REM Sample .job File
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REM Takes 30 samples for 50 seconds, separated by 10 seconds

REM LOOP for 30 minutes, taking 50 second spectra
LOOP 30

REM Sets for the alpha decay detector
SET_DETECTOR 1
SET_PRESET_CLEAR

REM Depending on how you want to measure when to
REM stop, you can use SET_PRESET_LIVE, SET_PRESET_REAL,
REM SET_PRESET_COUNT, or SET_PRESET_INTEGRAL.
SET_PRESET_REAL 50
CLEAR
START

REM WAIT by itself waits until the spectrum is finished
WAIT 60

REM Save in my Athena directory, the I:\
SAVE "I:\8.13\alphadecay\data\pipstestrun\specloop_???.spe"
CLEAR

END_LOOP

APPENDIX C: MATLAB IMPLEMENTATION

A helpful MATLAB script can be found as bate.m
under the labguides/45.alphadecay directory in the
8.13 locker on Athena. It returns a matrix of size
[length(N0), length(t)]. The last lines can be com-
mented and uncommented to return either the amounts
of the nuclides in atoms or the activity in Bq (events /
sec):

function R = bate(t, lambda, N0)
% Calculates Bateman Equations
% t: time vector
% lambda: decay constants vector
% N0: initial conditions vector
% (number of each nuclide)
%
% R: size(length(N0),length(t))
% matrix containing either activity or
% amount for each nuclide in N0
Lambda = -diag(lambda) + ...

diag(lambda(1:(end-1)), -1);
[V, D] = eig(Lambda);

% MATLAB trickery to make it go in t
% step-by-step without a for loop,
% equivalent to Vexp(Dt)V^-1 N0 for each t
Nt = V * diag(inv(V) * N0) * ...

exp( D * repmat(t, length(N0), 1) );

% Return amount of each isotope
% as a function of time
% R = Nt;

% Activity = Amount of isotope *
% decay constant (in Bq, evt / sec)
R = diag(lambda) * Nt;

For example, to simulate a three-isotope decay chain
with half lives τ1/2 = 105 sec, 10 sec, and 102 sec, one
would input:

% 15 minutes
t = 0 : 1 : 900;

% All the half lives, in seconds
tauHalf = [10^5; 10; 10^2];
% From half lives to decay constants
lambda = ( tauHalf / log(2) ) .^ (-1);

% Start with one mole of tau_{1/2} = 10^5
N0 = [6.0221415 * 10^23; 0; 0];
R = bate(t, lambda, N0);

and a plot of the output would look like figure 2. This
file can also be found in that directory under bate ex.m.

APPENDIX D: NATURALLY OCCURRING
RADIOACTIVE CHAINS

See figures ??, ??, and ?? for naturally occurring ra-
dioactive chains.
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FIG. 9: The naturally occurring “Thorium” series. From “Nuclides and Isotopes, 15th Edition”, Reference [1].

FIG. 10: The naturally occurring “Uranium” series. From “Nuclides and Isotopes, 15th Edition”, Reference [1].
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FIG. 11: The naturally occurring “Actinium” series. From “Nuclides and Isotopes, 15th Edition”, Reference [1].
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21-cm Radio Astrophysics

MIT Department of Physics
(Dated: September 5, 2011)

We use a computer-controlled parabolic antenna, located on the roof of Building-26 at MIT, to
collect radio waves at 21 cm from the sky. In the first part of the experiment, we measure the
brightness temperature of the sun at 21cm. In the second part of the experiment, we observe the
Doppler spectrum of the 21-cm hyperfine line of interstellar atomic hydrogen in various directions
in the plane of the Milky Way galaxy. These spectra enable us to measure the rotation-curve and
deduce certain features of the spiral-arms of the Milky Way.

1. PREPARATORY PROBLEMS

1. Explain the origin of the 21-cm line of atomic hy-
drogen.

2. Describe the size and shape of the Galaxy, giving
our position from the center in light-years and par-
secs (pc). What is the maximum Doppler shift you
can expect to observe in the 21-cm line?

3. The parabolic dish antenna used in this experiment
has a diameter of 7.5 feet. Suppose it is set so that
a source of 21-cm radio emission drifts through its
field of view. Plot the signal strength at the output
of the diode detector as a function of angle from the
center of the field of view.

4. Explain the 21-cm spectrum at 150◦ and 60◦ as
shown in Figure 7.

5. Explain the signal chain in this experiment (e.g.
how the hardware and software serve to convert
the signal received by the telescope into a display
of signal strength versus frequency.

2. Progress Check for 2nd Session

What is the approximate temperature of the sun at
1420 MHz? Plot the power spectrum of galactic hydro-
gen at 40 degrees galactic longitude and identify all the
salient characteristics of the spectrum. Does it agree with
Van de Hulst’s observation in Figure 7?

3. General Structure of the Milky Way

This description of the Galaxy is a summary of the
material contained in Galactic Astronomy by Mihalas
and Binney [1], a very useful reference for this ex-
periment. It also contains in Chapter 81 a detailed
presentation of the theoretical basis for interpreting

1 This chapter can be found on 8.13 website.

the data on galactic kinematics obtained from obser-
vations of the Doppler profile of the 21-cm line. An-
other very nice introduction to the structure of the
Milky Way is on-line at http://cassfos02.ucsd.edu/
public/tutorial/MW.html. Other useful references for
this lab are [2–8].

The Sun is one among the approximately 1011 stars
that comprise our Galaxy. From a distant vantage point
this vast array of stars would appear as a rotating spiral
galaxy. Detailed examination of the Milky Way reveals a
spheroidal component and a concentric disk component.
The spheroidal component consists mostly of small (M <
0.8M�), old (10-15 billion years) stars of which most are
concentrated in a central “bulge” with a diameter of ∼ 3
kpc and the rest are distributed in an extensive “halo”
that extends to a radius of 30 kpc or more. The disk
component is a thin, flat system of stars, gas and dust
∼200 pc thick and ∼30 kpc in radius. The disk stars are
extremely heterogeneous, ranging in age from new-born
to the age of the halo stars, and with masses from ∼ 0.1
to ∼ 100M�.

The solar system is imbedded in the disk component
at a distance of 8.0±0.5 kpc from the center at which
radius the circular motion of the Galaxy has a period of
approximately 2× 108 years.

Between the stars of the disk is the interstellar medium
(ISM) of gas and dust comprising approximately 10% of
the total mass of the disk. The gas consists primarily
of hydrogen and helium with a mass density ratio of 3
to 1 and an average total number density of about 1
atom cm−3. The dust is composed mostly of graphite,
silicates and other compounds of the light and common
elements in microscopic grains containing a small fraction
of higher-Z elements, primarily iron.

Comparison of visible spectra from the stars with the
line spectra of elements in the laboratory yielded infor-
mation on the composition and temperature of stars, and
measurement of wavelength shifts due to the Doppler ef-
fect provided determinations of radial velocities which
revealed the dynamical properties of systems. Most of
the interstellar medium, however, is too cold to radiate
in the visible part of the spectrum and its properties re-
mained largely unknown until fifty years ago. Then, in
the midst of World War II, a young Dutch astronomer,
H. van de Hulst, examined the theoretical possibilities for
detecting radio waves from the ISM, which would permit

http://cassfos02.ucsd.edu/public/tutorial/MW.html
http://cassfos02.ucsd.edu/public/tutorial/MW.html
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measurements of physical conditions and radial motions
like those available in the visible spectrum. He predicted
that the spin-flip transition of atomic hydrogen would
produce such a line at a wavelength near 21 cm, and
that the unique conditions of low density and temper-
ature in interstellar space are such as to allow time for
hydrogen atoms, excited by collision to their hyperfine
triplet state, to decay by radiation to the singlet ground
state.

The line was observed in 1951 by Ewing and Purcell
at Harvard, by Christiansen in Sydney, and by Muller
and Oort in the Netherlands. Radio observations at 21
cm soon became a major tool of astronomy for exploring
and measuring the structure of our Galaxy and many
distant galaxies too.

Atomic hydrogen is the principal constituent of the in-
terstellar medium, and one of the most interesting tracers
of galactic structure. Whereas visible light is heavily ob-
scured by dust in the ISM, radiation at 21 cm suffers
little absorption.

Measurements of the Doppler shifts of the frequency of
the 21-centimeter line determine the radial components
(projections onto the line of sight) of motions of the in-
terstellar medium. Analysis of the Doppler shifts in vari-
ous directions around the galactic plane (i.e. around the
Milky Way) reveal the kinematic structure of the galaxy,
e.g., the tangential velocity of the matter in the Galaxy
as a function of the distance from the center, and, by
implication, the geometry of the spiral arms.

4. Possible Theoretical Topics

While doing this experiment, you might find it useful
to have a basic know-how about the following:

1. Hyperfine splitting of the hydrogen ground state.

2. Radiative processes in the sun.

3. Antenna theory.

4. The structure and dynamics of our Galaxy.

5. Radiative transfer.

5. Some Jargon used in Experiment

Please look up the definitions of the following terms
before you do the experiment.

1. Brightness Temperature

2. Antenna Temperature

3. Antenna Pattern or Antenna Function

4. Rotation Curve

5. Local Standard of Rest

6. Local Sidereal Time

7. Galactic Longitude

8. Azimuth and Elevation

6. EXPERIMENTAL APPARATUS

Many details regarding the antenna, calibration and
experimental procedures, and documentation for the
software can be found on the Junior Lab Student Wiki
and the Junior Lab Website.

6.1. Hardware

6.1.1. Antenna & Motors

The small radio telescope, SRT, is a 7.5 foot diameter
parabolic dish and receiver designed by Haystack Obser-
vatory and sold by Cassi Corporation. Complete speci-
fications for the antenna, mount and receiver are avail-
able under the “Antenna and Mount Information” link at
the SRT website (http://www.haystack.mit.edu/edu/
undergrad/srt/). It has a focal length of 85.7cm. It
has a beam width of approximately 7.0 degrees.2. The
dish is mounted on a two-axis azimuth/elevation mount.
It is supported by an aluminum frame constructed from
C/Ku band mesh that reflects all incident microwave
energy if the surface holes are less than 1/10th of the
incident wavelength. The system is controlled using a
computer running a java applet that communicates with
the controller, which contains a Basic-Stamp microcon-
troller. The microcontroller in turn controls the motor
functions. A very basic block diagram of the system is
shown in Fig. 1.

RECEIVER DISH MOTORS CONTROLLER COMPUTER

FIG. 1: A basic block diagram of the SRT

6.1.2. Receiver

The SRT uses a phasing-type single-sideband scanning
receiver. Fig. 2 shows a block diagram of the radio re-
ceiver and subsequent signal processing stages. Radio
power arriving from the sky is focused by reflection to

2 The first minimum of the antenna diffraction pattern is given by
1.22λ/d ≈ 7◦.

http://www.haystack.mit.edu/edu/undergrad/srt/
http://www.haystack.mit.edu/edu/undergrad/srt/
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the antenna feed horn. Signals then pass through a band
pass filter, a low noise pre-amplifier and a mixer. The
signal is digitized and sent back to the controlling com-
puter over a serial RS-232 link. The central frequency of
the synthesized local oscillator (LO) used in the mixer is
user selectable from within the JAVA program. This per-
mits the investigator to look at different spectral regions
around 1420 MHz.

FIG. 2: A block diagram of the SRT Receiver

FIG. 3: A picture of the antenna feedhorn

1 - L-Band probe

2 - Low Noise Amplifier

3 - Universal Male F to F Coupler

4 - Receiver mounting bracket

5 - Video Port - Analog signal

6 - Power and Communication - Digital Signal

7 - Band Pass Filter

8 - Feed Horn Extension

Signals pass from the feed horn to the low noise ampli-
fier. The LNA provides a 24dB gain whose output passes
through a 40MHz bandpass filter that prevents band sig-
nals from producing intermodulation in the image rejec-
tion mixers. Mixers are circuit elements that form the
product of two analog waveforms (in NMR these elements
are also called “phase detectors”). It’s two inputs and
output are related by the trigonometric relationship:

cosω1t cosω2t =
1

2
cos (ω1 + ω2)t+

1

2
cos (ω1 − ω2)t.

(6.1)

Note that both sum and difference frequencies are gener-
ated in a mixer. For our application, we band-pass filter
the output and throw away the sum frequency contribu-
tion. See the “Receiver Information” link on the SRT
website for more information.

6.1.3. Electronic Noise Calibration

Electronic noise calibration is performed using a noise
diode, whose intensity and spectral distribution is ap-
proximately equivalent to a 115 Kelvin blackbody.

Compare this to the known signal strengths of some
radio sources in the sky, shown in Figure 4.

The electronic noise calibrator is a diode (Noise/Com
NC302L) connected to a small dipole antenna attached
to the center of the SRT dish. A small (6mA) current
is sent through a controlled bulk avalanche mechanism,
resulting in a wide band of frequencies. The dipole emits
the signal which is detected by the receiver. To generate
the correct wavelength signal, the dipole was fabricated
to be 1/2 wavelength, or approximately 10.5 cm. To
minimize signal from behind the dipole, the poles are
set 1/4 wavelength, or approximately 5.25 cm, above the
circular plate at the center of the SRT dish.

In practice, to calibrate the telescope you just have to
point the antenna at an empty part of the sky, change the
frequency to the hydrogen frequency, and hit the ‘Calib’
button on the software interface. The software outputs
a single number called Tsys which represents the back-
ground noise level in the device.

The software measures the ratio of the received power
when the noise diode is turned on and then off again.
Complete details of the SRT calibration are avail-
able at http://www.haystack.edu/edu/undergrad/
srt/receiver/SRT_calibration.html and http://
web.mit.edu/8.13/www/calibrator_report.pdf.

6.2. Software

The SRT control software interface is run from a com-
puter which communicates with the ground controller in
26-630. The ground controller serves as the interface be-
tween the computer and the antenna stepper motors as
well as the digital receiver located next to the antenna
feed. RS-232 is used to send commands to the motors
and to receive back the digitized spectral temperatures
from the receiver3. The ground controller should be left
ON so that students can remotely operate the dish from
4-361.

3 Full details and schematics of the ground controller are available
at http://www.haystack.edu/edu/undergrad/srt/receiver/

schemgndctl2.pdf

http://www.haystack.edu/edu/undergrad/srt/receiver/SRT_calibration.html
http://www.haystack.edu/edu/undergrad/srt/receiver/SRT_calibration.html
http://web.mit.edu/8.13/www/calibrator_report.pdf
http://web.mit.edu/8.13/www/calibrator_report.pdf
http://www.haystack.edu/edu/undergrad/srt/receiver/schemgndctl2.pdf
http://www.haystack.edu/edu/undergrad/srt/receiver/schemgndctl2.pdf
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FIG. 4: Noise Temperature versus angle from zenith.
Taken from Kraus, 2nd Edition.

A printed copy of the SRT Manual is located next
to the computer in 4-361 and is also available online on
the Junior Lab Wiki. This manual is very helpful for
understanding how to work with the software.

Please take a while to look at the panel on the right-
hand-side of the software window. Familiarize yourself
with the information that is shown there.

The SRT is continually acquiring and processing RF
signals incident upon the dish. The upper right plot
in the software window shows individual power spec-
tra updated every few seconds. The plot to the left in
RED, shows an integrated power spectrum which may be
cleared by pressing the “CLEAR” button.

It is convenient to check the system by generating a
test signal at 1420.4 MHz. This is done with the Marconi
RF synthesizer. Turn the device on, press the “RECL”
button, then choose the first setting (enter ‘01’). This
will set the generator to produce an RF signal at 710.2
MHz, which will also cause the antenna to emit the first
harmonic, namely the desired 1420.4 MHz line. Press
the “CARRIER ON/OFF” button to toggle the signal
on and off. During this calibration, you can point the
telescope at any clear part of the sky (avoid buildings –
they emit and reflect all manner of infrared). Make sure
that you don’t leave this synthesizer on except for brief
tests and system calibrations, because it will interfere
with any other 21 cm experiment nearby.

You can execute commands via the toolbar located at
the top of the console. Clicking on any of these but-

tons either initiates an automatic response or the soft-
ware waits for text input by the user.

Azimuth and elevation locations are set using the Hori-
zon Coordinate system. Azimuth and elevation are en-
tered in degrees. The controller moves the telescope to
the required position. If “tracking mode” is on (button
text is YELLOW), when the telescope reaches the po-
sition, the controller continues to move the telescope to
compensate for the Earth’s rotation so as to keep the
telescope pointing to the specified position in the sky.
To turn tracking off, simply click on the button and it
should turn RED.

Try the following to get started:
Enter “180 40” in the text window and then press the
Azel button. The dish should slowly move to point
due south. Press STOW to return the dish to it’s
“parked” position at Azimuth=95◦,Elevation=4◦. Press
the “RECORD” button to stop writing to the log file and
open it up using a text editor.

It is useful to begin a log file (‘.rad’ file) which provides
you with a continual record of your experiment. You can
do this using the RECORD button. Hitting the record
button again will cause the recording to stop.

Instead of using individual buttons from the toolbar, in
some parts of the experiment it is useful to write a script
(a ‘.cmd’ file) and load the script to be run. Please see
the SRT manual for sample scripts.

The program calculates the Local Sidereal and Univer-
sal Time based on the computer clock settings within the
information sidebar on the right-hand side. Since Uni-
versal Time = Eastern Time + 5 hours (under
Standard Time) and = Eastern Time + 4 hours
(under Eastern Daylight Savings Time), you must
make sure the box “Automatically adjust clock
for daylight savings” is checked when setting the
computer’s clock. It also indicates the antenna direc-
tion in both Equatorial (RA and DEC) and Galactic (‘l’
and ‘b’).

When turning on the system, pay special attention to
any error messages that may appear within the Message
Board below the Total Power Chart Recorder. They
may indicate that the system has failed to communicate
through the coaxial cable (i.e. gnd 0 radio 1). If move-
ment of the dish stops prematurely, “antenna drive sta-
tus..” or “lost count” may appear in the Motion Status
Display Area. If this occurs please turn off the control
system (which in turn ends motor power) and have a
technical staff member take a look at the motor drive
gears. Be sure to return the dish to the stow position
each time before powering down and quiting the java ap-
plet.

7. Experimental Procedure

To prepare yourself for these measurements, start by
reading the Haystack ‘SRT Projects’ link on the SRT
wesite.



Id: 46.21-cm-srt.tex,v 1.64 2011/09/02 20:48:49 rfoote Exp 157

First of all, set the frequency to “1420.4 4” in order
to set the bandwidth as wide as possible to reduce noise
variations and calibrate the system temperature Tsys

7.1. The Sun’s Brightness Temperature

Do an “npoint” scan of the Sun. By clicking on
the “npoint” button, a series of measurements surround-
ing the sun in a 5×5 grid are made with the step size set
by the antenna beamwidth defined in the “srt.cat” file.
The default value for the beamwidth is 5◦. The mea-
sured power/temperature at each of these grid points is
displayed just above the text input box and at the com-
pletion of the scan, a 2-D contour plot of the grid is dis-
played in the graph box at the top of the page. Informa-
tion about the sweep is then displayed in the information
sidebar. The telescope offsets are also adjusted so as to
point the dish to the maximum observed signal within
the sampled region.

The “npoint” scan is also useful for verifying the tar-
geting accuracy of the system. If the computer clock is
set incorrectly or the local latitude and longitude have
been inadvertently changed, the sun will NOT appear
well centered in this gridded scan. See for example, Fig-
ure 5.

FIG. 5: Typical result from an “npoint” scan. The
contour plot is generated from a 5× 5 series of

measurements spaced by 1/2 the antenna beamwidth as
specified in the srt.cat text file within the CassiSRT

folder.

The “npoint” scan will focus the dish at the maximum
temperature location for the sun when completed. Point-
ing corrections should be set to the location of peak in-
tensity before continuing the observation session.

To manually specify offsets, enter the offset in the com-
mand text area.
enter azimuth(degrees) elevation(degrees)
Press ‘‘offset’’ button

If you enter -5 -5, the effect is that the npoint plot will
move right and up.

Do an azimuth scan and an elevation scan of
the Sun. For this, you will need to write a .cmd file

specifying the various offsets from the Sun that you want
to take data. For example, these offsets may range from
−30◦ to 30◦ in steps of 2◦. Your antenna temperature
vs. angular offset curve should resemble Figure 6.

You can also use the “drift” button to cause the dish
to be pointed “ahead in time” and then stopped. This
will permit the sun, or any other object, to drift through
the antenna beam.

This data will enable you to derive an empirical value
for the half-power beamwidth (HPBW) of the antenna,
which can be compared to the theoretical value.

Measurement of the beam pattern can help the user
discover problems with optical alignment or aid in the
determination of antenna focus.

What is the convolution of a finite source with the ra-
diation pattern of the antenna beam? Can you model
this? An interesting comparison can be made by com-
paring your results with the solar flux measured by other
antennas around the world, see http://web.haystack.
mit.edu/SRT/solar.html.
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FIG. 6: A typical Azimuth or Elevation scan of the sun.

7.2. Rotation Curve of the Milky Way

To measure the rotation curve of the Milky Way, you
will need to record hydrogen line profiles at a known set
of galactic coordinates.

Your first job is to figure out at which coordinates to
point the telescope. Use the software to determine when
these regions of the galaxy will be visible to the telescope.
Since the visible portion of the galaxy varies with time,
you may find it necessary to share observation time with
student pairs from other sections.

Derive the Galactic rotation curve, and estimate the
mass of the Galaxy interior to the circle tangent to the
lines of sight.

Observe the non-uniformities in the hydrogen distri-
bution revealed by the doppler-induced structures of the

http://web.haystack.mit.edu/SRT/solar.html
http://web.haystack.mit.edu/SRT/solar.html
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line profiles. The multiple-component line profiles are
evidence of the spiral-arm structure of the Galaxy.

8. Analysis

1. Compare your plot of the angular response function
of the antenna obtained in the scans of the sun
with the theoretical diffraction pattern of a circular
aperture.

2. Derive an estimate of the brightness temperature

of the sun at 21 cm from your measurements.

3. Using your Galactic data and with the help of the
discussions presented in Mihalas and Binney[1] and
by Shu[2], derive a plot of the velocity curve of the
Galaxy as a function of radius. Why are you only
able to do so for locations interior to the radial
position of our solar system?

4. Optional. Using the Galactic data, construct some
features of spiral-arm structure of the Milky Way.

[1] D. Mihalas and J. Binney, Galactic Astronomy (San Fran-
cisco, 1968).

[2] F. H. Shu, The Physical Universe - Chapter 12 (University
Science Books, Mill Valley, CA, 1982), this reference gives
a clear description of the interpretation of 21cm spectra in
terms of the rotation curve of the Galaxy.

[3] K. Rohlfs and T. L. Wilson, Radio Astronomy, 2nd. ed.
(Springer, 1996), a modern handbook of radio astronomy
techniques. Section 5.5 describes the relationship between
antenna temperature and brightness temperature.4 Chap-
ter 6 provides a useful discussion of antenna theory.

[4] e. a. H. C. van de Hulst, Bull. of the Astron., vol. XII, 117
(Institutes of the Netherlands, 1954).

[5] P. Duffett-Smith, Practical Astronomy With Your Calcu-
lator (Cambridge, 1988), 3rd ed.

[6] I. S. Shklovski, Cosmic Radio Waves (Cambridge; Har-
vard University Press, 1960).

[7] H. Horowitz and W. Hill, The Art of Electronics, 2nd Edi-
tion (Cambridge University Press, 1989).

[8] F. J. Kerr, Ann. Rev. Astron. Astroph. Vol.7, 39 (1969).

4 Note, however, the following errors in Section 5.5: The
equation between equation (5.59) and equation (5.60) should
read Iν = 2kT/λ2. Equation (5.62) should read W =
1
2
Ae
∫ ∫ 2kTb(θ,φ)

λ2 Pn(θ, φ)dΩ.
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FIG. 7: Survey of hydrogen line profiles at various galactic longitudes. (from H.C. van de Hulst et. al., Bull. of the
Astron. Inst. of the Netherlands, XII, 117, May 14, 1954) Note: Pictures are reversed from our images and

longitude is given in the old system (lI ,bI). lII = lI + 32.31◦
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APPENDIX A: THE SRT.CAT FILE

The text file srt.cat, located in SRTCassi, is the
primary configuration file for the SRT java interface
program that is used to control the telescope.

The srt.cat file may be updated, but upon doing
so, please stow the telescope, shut down the control
program, and restart it so that it recognizes any updates
made to the srt.cat control file.

The srt.cat file contains keywords which are case
sensitive. Lines that are preceded by a “*” are ignored.
Blank lines are ignored.

Keywords:
AXISTILT* - Use to set the azimuth and elevation
axis tilt. Default is 0 0
AZEL* - Allows user to catalog a fixed catalog location
by name.
AZLIMITS - This may be set to allow movement in a
clockwise position from stow from 90◦ to 270◦. At the
midpoint the telescope will face due south. Degree limits
should be set slightly below the physical limitations of
the telescope. It is recommended to use 95◦ and 265◦.
The telescope movement is clockwise as seen from above
through increasing degree.
BEAMWIDTH* - Antenna beamwidth in degrees,
default is 7.0◦.
CALCONS* - Gain correction constant. This is the
ratio of temperature (K) per count. Change this during
calibration (should be 1 to 1 ratio). Default is 1.0. This
will be changed by software after calibration occurs and
value will be available in the status bar.
COMM* - Communication port, default 1, use 0 for
linux.
COUNTPERSTEP* - Counts per step for stepped
antenna motion. The default is no stepped motion.
CURVATURE* - Optional correction for curvature in
spectrum. The default is 0.
DIGITAL - Indicates that a digital receiver is being
used. Comment out if using the analog receiver (set via
jumper removal).
ELBACKLASH* - Optional correction for elevation
backlash to improve pointing in flipped mode. The
default is 0.
ELLIMITS - This may be set to allow movement in
a clockwise position from stow from 0◦ to 180◦. At
the midpoint the telescope will face up. Degree limits
should be set slightly below the physical limitations of
the telescope. It is recommended to use 10◦ and 175◦.
The telescope movement is clockwise as seen from above
through increasing degree.
GALACTIC - Set a galactic coordinate by location
and name.
MANCAL* - Calibrates vane. 0 indicates auto-
calibration, 1 indicates manual calibration. Is not a
requirement of the digital setup.
Moon - Add the Moon to the catalog.
NOISECAL - Calibration temperature of the noise

diode located at center of dish. Temperature is in K.
RECORDFORM* - Adds tabs to separate columns
in output file. The default is space delimited. ”VLSR”
adds vlsr and ”DAY” forces a file change at each new
day.
SOU - Set a source in the catalog by location and name.
For negative declination us ”-” in from of dd.
SSAT* - Satellite ID and location (satellite name then
longitude west).
STATION - Used to set latitude (in degrees), longitude
(in degrees), and station name.
Sun - Add the Sun to the catalog.
TLOAD* - Load temperature. Default is 300K.
TOLERANCE* - Counts of error which can accumu-
late before command to drive stow occurs. Default value
is 1.
TSPILL* - Antenna spill over temperature in K.
Default is 20K.

File Format:
STATION deg(latitude) deg(longitude) name
AZLIMITS deg(lower limit) deg(upperlimit)
ELLIMITS deg(lower limit) deg(upper limit)
CALCONS value
TLOAD value(in temp K - default 300K)
MANCAL value(0 or 1 - default is 0)
TSPILL value(in temp K - default 20K)
BEAMWIDTH value(in degrees - default 7)
AXISTILT deg(azimuth axis tilt - default 0)
deg(elevation axis tilt - default 0)
SSAT deg
AZEL deg(azimuth) deg(elevation) name
GALACTIC deg(longitude) deg(latitude) name
SOU ra(hh mm ss) dec(dd mm ss) name [epoc]
SUN
MOON
DIGITAL
NOISECAL value(in temp K)
TOLERANCE value(in counts)
COUNTPERSTEP value(in counts)
ELBACKLASH value(default 0)
CURVATURE value(default 0)
RECORDFORM value(i.e. ”TAB”, ”—”, default is ” ”)

* - represents required fields or fields that
should be set by user

[ ] - represents optional field
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APPENDIX B: COORDINATE SYSTEMS

This material is taken in part from Duffett-Smith’s
book “Practical Astronomy With Your Calculator, 3rd
Edition 1988, Cambridge Press”. It contains many use-
ful algorithms and is worth checking out of the library or
purchasing. There are several coordinate systems which
you may meet in astronomy and astrophysical work and
here we shall be concerned with four of them: the hori-
zon system (Figure 8), the equatorial system (Figure 10),
the ecliptic system (Figure 13) and the galactic system
(Figure 9).

Horizon Coordinates “Az” and “El” The horizon
system, using Azimuth and Altitude (Elevation) is the
system under which the SRT is operated.

FIG. 8: Diagram of the Horizon coordinate system.
Imagine an observer at point ’O’; then her horizon is
the circle ’NESW’ where North is the direction of the
north pole on the Earth’s rotation axis and not the
magnetic north pole. Azimuth increases from 0◦

(north) through 360◦. The altitude or elevation is
’how far up’ in degrees (negative if below the horizon).

Galactic Coordinates, “l” and “b” When describ-
ing the relations between stars and other celestial objects
within our own Galaxy, it is convenient to use the galactic
coordinate system. The fundamental plane is the plane
of the Galaxy and the fundamental directions the line
joining our Sun to the center of the Galaxy as depicted
in Figure 9.

Equatorial or Celestial Coordinates, “RA” and
“DEC” are the spherical coordinates used to specify the
location of a celestial object (Figures 10, 11 and 12). The
north celestial pole (NCP) is the direction of the Earth’s
rotation axis, and the celestial equator is the projection
onto the sky of the plane of the Earth’s equator.

Right ascension (RA) is the celestial analog of ge-
ographic longitude. RA is measured eastward along the
celestial equator from the vernal equinox (“V” in Fig-
ures 11 and 12) which is the ascending node of the plane

FIG. 9: Diagram of the Galactic coordinate system.
The point marked “S” represents the Sun, “G” is the
center of the Galaxy and “X” is a star which does not

lie in the galactic plane.

defined by the sun’s apparent motion (caused by the or-
bital motion of the Earth around the sun) and the celes-
tial equator. In catalogs of celestial objects RA is gener-
ally specified in units of hours, minutes and seconds from
0 to 24 hours, but it is often more conveniently specified
in degrees from 0◦ to 360◦ with a decimal fraction. Dec-
lination (DEC) is the celestial analog of geographic lati-
tude. DEC is measured north from the celestial equator
along a celestial meridian which is a great circle of con-
stant RA. In catalogs DEC is generally specified in de-
grees, arc minutes (’) and arc seconds (”), but it is also
often more conveniently specified in degrees from -90◦ to
+90◦ with a decimal fraction. (1 hour of RA at constant
DEC corresponds to an angle of 15◦*cos(DEC) degrees
subtended at the origin).

The ecliptic is the intersection of the Earth’s orbital
plane with the celestial sphere. To an observer on Earth
the sun appears to move relative to the background stars
along the ecliptic with an angular velocity of about 1◦ per
day. The angular velocity is not exactly constant due to
the eccentricity of the Earth’s orbit (e=0.016722). The
period of the Earth’s orbit is 365.256 days. The incli-
nation (ie) of the Earth’s equator to the ecliptic is 23◦

27’. The ascending node of the ecliptic with respect to
the celestial equator is the intersection of the ecliptic and
the celestial equator (the vernal equinox) where the sun
in its apparent motion crosses from south to north de-
clinations on March 21. Precession of the equinoxes
is the motion of the equinoxes along the ecliptic due to
precession of the Earth’s rotational angular momentum
about the ecliptic pole. The precession is caused by the
torque of the gravitational attractions between the sun
and moon and the Earth’s equatorial bulge. The period
of the precession is approximately 25,000 years.

Ecliptic coordinates (Figures 14 and 13) are gen-
erally used to specify the positions and orientations of
objects in the solar system. Ecliptic longitude (elon)
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FIG. 10: Diagram of the Equatorial coordinate system
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V celestial equator

FIG. 11: Diagram of the celestial coordinate system

is measured along the ecliptic eastward from the vernal
equinox. Ecliptic latitude (elat) is measured along a
great circle northward from the ecliptic.

The orientation of the orbit of a planet is specified by 1)
the ecliptic longitude of the ascending node of the orbital
plane and 2) the inclination of the orbit to the ecliptic.

NCP

V celestial equator
ecliptic

NEP

A

W

S

sun

23o

FIG. 12: Diagram of the celestial sphere, showing the
celestial north pole (NCP), the celestial equator, the

north ecliptic pole (NEP) and the ecliptic. The points
labeled V, S, A, and W are, respectively, the vernal

equinox, summer solstice, autumnal equinox, and winter
solstice corresponding to the directions of the sun on
March 21, June 21, September 21, and December 21.
The point labeled “sun” is the direction of the sun on

approximately April 21.

FIG. 13: Diagram of the Ecliptic coordinate system

Similarly, the orientation of a planet’s rotation or the
rotation of the sun itself, as illustrated in Figure 14, is
specified by the ecliptic longitude (ELON) of the ascend-
ing node of its equator and the inclination (INCL) of the
equator to the ecliptic.



Id: 46.21-cm-srt.tex,v 1.64 2011/09/02 20:48:49 rfoote Exp 163

NCP

V celestial equator
ecliptic

NEP

W

S
*

elon

elat

FIG. 14: Diagram showing the relation between the
ecliptic and celestial coordinate systems
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FIG. 15: Diagram of the relations between the
quantities involved in setting the position of the

telescope about the polar (HA or RA) axis
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APPENDIX C: SIGNAL PROCESSING IN 21-CM
RADIO ASTROPHYSICS

For a voltage v(t) measured in the time domain we can
compute the Fourier transform V (ν):

V (ν) =

∫
v(t)e−2πiνtdt (C1)

Note that V (ν) is complex, giving us an amplitude and
a phase for each frequency component. In our experiment
we are not interested in the phase information. Taking
the square modulus of the Fourier transform gives us the
voltage power spectrum:

S(ν) = [V (ν)]
2

(C2)

S(ν) is the quantity plotted by the data acquisition
software. For the voltage power spectrum, the units are
volts2 (rms), and a sine wave with amplitude Vorms will
produce a signal of amplitude Vorms/4, which becomes
Vorms/2 in the one-sided spectrum that is displayed (see
below). The spectrum displayed on the Junior Lab com-
puter screen has units dBm, which is power expressed
in dB referred to one milliwatt. The spectrum values
are converted to milliwatt units by taking into account
the characteristic impedance of the transmission line,

Zo = 50 Ω. This is done according to dBm = 10log V rms
2

.22362

where the 50 Ω’s in the numerator and denominator have
canceled. The power you measure

V 2
rms

Z0
is the power go-

ing down the cable to the A/D converter, related to, but
not equal to, the power received at the antenna.

The above expression for the Fourier Transform, refer
to a continuous signal measured for an infinite length of
time. In practice, instead of v(t), we in fact measure
vi(t), discrete samples separated by a time interval δt,
over a period of time ∆t. Thus the number of points
measured is N = ∆t/δt. Our Fourier transform is now
the sum

Vj(ν) =

N∑

i=1

vi(t)e
−2πiνjtδt (C3)

This differs from the ideal V (ν) computed above in
some important ways. We have to consider the effects of
sampling and windowing. We also note that the power
spectrum has the property of symmetry about zero fre-
quency.
Sampling: We sample the signal at a rate 1/δt, which
means that only signals with frequency 2/δt or smaller
can be reconstructed. In a properly designed spectrom-
eter the sampling range and the anti-aliasing filter are
chosen with this in mind. This is the reason for the
3 MHz bandpass filter (see Figure 2) and the sampling
rate of just over 6 MHz. A strong signal with frequency

larger than 6 MHz that “leaks” through the filter will ap-
pear in our power spectrum at an aliased frequency with
the 0-3 MHz band. Thus, strong interference signals can
corrupt your spectra, even though they are outside the
bandpass.

Because we use the Fast Fourier Transform (FFT) al-
gorithm to compute the Fourier transform, the spectra
are also sampled with values known only at certain values
of the frequency. Our frequency “channels” are centered
at these values and are separated by

δν =
1

Nδt
(C4)

Windowing: Because the time series is truncated (i.e.,
we only measure the voltage signal for a finite period of
time), the features in the frequency domain are broad-
ened. In other words, a pure harmonic signal, which
in principle would appear as a delta function in the fre-
quency domain, in fact appears as a feature with nonzero
width. We can express this effect of the limited time span
by multiplying by a “window function” w(t) in the time
domain:

vm(t) = w(t)v(t) (C5)

For the simplest window function with no weighting, w(t)
is unity during the times of the measurements and zero
otherwise:

w(t) = 1 for − ∆t

2
≤ t ≤ ∆t

2
(C6)

By the convolution theorem, the Fourier transform of
vm(t) is the convolution of the Fourier transforms of v(t)
and w(t):

Vm = W (ν) ∗ V (ν) (C7)

The Fourier transform of the uniform w(t) function above
is a sinc function in the frequency domain (see Figure 1):

W (ν) =
sinπν∆t

πν
(C8)

The width of the sinc function is proportional to ∆t.
For example, the half width at the first null (HWFN)
is 1/∆t. Thus, each frequency “spike” in the frequency
domain is broaden into a feature shaped like a sinc func-
tion with a width determined by the length of the data
stream. Note that that the spacing between the nulls is
equal to 1/∆t and that this is also the channel spacing.
The spectral line is also characterized by “sidelobes,” a
sort of ringing that can extend far from the main spec-
tral feature. For this choice of window and sampling, the
width and sidelobes do not appear in the sampled values
of the spectrum if the spectral line is at the center of a
channel.

The uniform window is only one possible weighting
scheme that can be applied to the data. By changing
the weights, we can change the shape of the spectral line
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FIG. 16: The Fourier transform of a uniform window of
width ∆t. The vertical dotted lines show the centers of
the frequency channels in the sampled power spectrum,
assuming the spectral line is exactly at the center of one

channel (which it may not be).

in the frequency domain. The choice should be based
on considerations of the expected properties of the spec-
trum. For example, if we were interested in resolving
two closely spaced spectral features, we would choose a
weighting scheme that would produce a narrow spectral
peak. If we were concerned about interfering signals, it
would be prudent to choose a weighting function that
produces small sidelobes, even at the cost of a broader
spectral peak.
Symmetry About Zero Frequency It can be shown
that the Fourier transform of a real function is symmet-
ric about zero frequency. For nonzero frequency compo-
nents, the power is equally divided between ±ν. When
we display the spectrum, we just sum the frequency
components at ±ν and present a “one-sided” spectrum.
Thus, the first frequency bin is at ν = 0, and the last
frequency bin is at ν = δν(N2 − 1).

1. Fourier Transform Spectroscopy

The radio astrophysics data acquisition program
presents you with choices of:

• Blocks to average = Nblocks

• 2 Sided PS bins = Nbins (corresponds to “n” above)

• Window

From these quantities the duty cycle and the frequency
channel spacing are computed and displayed.
Blocks to average Each “block” of data consists
of 219 = 524288 samples collected in the time domain
(taking approximately 79msec at a sampling rate of
6.67Msamples/sec). This is the minimum amount of data
the program can take. After collecting a block of data,
the computer is occupied for some time calculating the
power spectrum from nδt segments of the data, apply-
ing any user selected windowing function and converting
to dBm. A power spectrum is calculated for each block
of data, and these spectra are averaged. The fraction
of time that the computer is collecting data (as opposed
to processing it) is the “duty cycle” that is displayed on
the screen. As computers get faster and faster, this duty
cycle should approach unity.

2 Sided PS bins The signal we measure is real, so
the power spectrum we compute is symmetric about zero
frequency. The spectrum presented on the PC screen has
been “folded” so that the channels at plus and minus the
same frequency have been summed. The channel spacing,
δν, displayed on the screen is

δν =
1

Nbinsδt
=

6.67 MHz

Nbins
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Optical Trapping

MIT Department of Physics
(Dated: September 5, 2011)

An optical trap or “optical tweezers” is a device used to apply piconewton sized forces on micron
sized objects under a microscope using a highly focused light beam. It can be created by applying
a precisely focused laser onto a dielectric material. It allows very detailed manipulations and mea-
surements on several interesting systems in the fields of molecular and cell biology and thus acts
as a major tool in biophysics. They are used in biological experiments ranging from cell sorting to
the unzipping of DNA. Similar principles are also used in physical applications such as atom cool-
ing. In this experiment, you will measure the Brownian motion of a silica microsphere in aqueous
solution, both testing the theory of statistical mechanics and calibrating the “spring constant” of
the trap. Then, using the calibrated trap, you will measure forces in biological systems, such as the
actin-myosin molecular motors of vesicle transport in onion cells, the E. coli flagellar motor, or the
restoring force of a stretched DNA molecule.

Notice:
This labguide is still under active development. To provide an outline of the full labguide, only

the preamble information and the section headings (with some filler text necessary for page breaking
to work properly) are given here. For access (MIT only) to the complete working draft, please visit
https://jlab.mit.edu/wiki/51._Optical_Trapping

PREPARATORY PROBLEMS

1. In the limit of ray optics, the trapping force
on a dielectric sphere can be understood as
arising as a reaction force the change in linear
momentum experience by a deflected light ray.
To better understand how the scattering and
gradient forces — and the trap’s stability —
vary with bead displacement both vertically and
horizontally, spend some time exploring this
Java applet simulator developed by the lab of
Roberto Di Leonardo, CNR-IPCF Dipartimento
di Fiscica, Universita di Roma Sapienza in Italy:
http://glass.phys.uniroma1.it/dileonardo/
Applet.php?applet=TrapForcesApplet. De-
scribe and qualitatively sketch how a bead slightly
displaced from the center of a stable trap experi-
ences a restoring force. Is the center of the trap at
the same location as the focus of the light? Explain
why high numerical aperture optics are used in
this experiment. Finally, given the wavelength of
laser and sizes of objects to be trapped in this
experiment, do you trust the ray optics simulation
to be quantitatively accurate?

2. Estimate the time and distance required for a mo-
bile bacteria of typical bacterial speed in an aque-
ous environment to come to a halt under viscous
drag. See [? ], for example. How do these time
and length scales compare to biologically relevant
scales? How does ma compare to the force needed
to keep the bacteria moving at its initial constant
speed (before it stopped), where a is the average
deceleration of the bacteria, and m is its mass?

3. What are the principle safety hazards you could
encounter in this experiment? How do you avoid

danger from these hazards?

Suggested Schedule

Day 1 Familiarize yourself with the apparatus and trap
a bead. Make detailed notes on the effects of each
control knob.

Day 2 Calibrate QPD voltage to stage position using
stuck bead sample. Measure PSD noise on free
bead, to obtain data for equipartition analysis. Ob-
tain a first estimate of Boltzmann’s constant and
trap stiffness.

Day 3 Make onion cell sample and trap a vesicle.

Day 4 Finish onion cell experiment. Optionally do
Stokes drag measurement — to refine Boltzmann’s
constant — or further biological experiments. Note
that biological samples may take days to prepare,
so you must plan ahead and communicate with your
instructors.

The experimental goals are:

1. Measure Boltzmann’s constant using equipartition
theorem and Brownian PSD

2. Calibrate optical trap stiffness versus laser supply
current

3. Estimate force and speed of molecular motors
transporting vesicles in onion cells

1. Introduction

“Is this the Region, this the Soil, the Clime,”

https://jlab.mit.edu/wiki/51._Optical_Trapping
http://glass.phys.uniroma1.it/dileonardo/Applet.php?applet=TrapForcesApplet
http://glass.phys.uniroma1.it/dileonardo/Applet.php?applet=TrapForcesApplet
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1.1. What is an Optical Trap?

Said then the lost Arch-Angel, “this the seat

1.2. The Physics Behind Trapping

That we must change for Heav’n, this mournful gloom

1.3. Boltzmann’s Constant and the Equipartition
Theorem

For that celestial light? Be it so, since he

1.4. Brownian motion and the power spectral
distribution (PSD) function

Who now is Sovran can dispose and bid

1.5. Molecular Motors and Forces in Microbiology

What shall be right: fardest from him is best

2. Apparatus

Whom reason hath equald, force hath made supream

2.1. Light Sources

Above his equals. Farewel happy Fields

2.1.1. Laser and laser beam path

Where Joy for ever dwells: Hail horrours, hail

2.1.2. White light LED and sample visualization

Infernal world, and thou profoundest Hell

2.2. Inverted oil immersion microscope

Receive thy new Possessor: One who brings

2.3. Position measurement

A mind not to be chang’d by Place or Time.

2.3.1. Quadrant photodetector (QPD)

The mind is its own place, and in it self

2.3.2. Microscope stage

Can make a Heav’n of Hell, a Hell of Heav’n.

2.4. Control system and electronics

What matter where, if I be still the same,

3. Samples

And what I should be, all but less then he

3.1. Sample geometry (flow channel)

Whom Thunder hath made greater? Here at least

3.2. Fixed microsphere samples

We shall be free; th’ Almighty hath not built

3.3. Floating microsphere samples

Here for his envy, will not drive us hence:

3.4. Biological samples

Here we may reign secure, and in my choyce

4. Operating Instructions

To reign is worth ambition though in Hell:

4.1. Safety

Better to reign in Hell, then serve in Heav’n.

4.1.1. Laser Safety

But wherefore let we then our faithful friends,
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4.1.2. Biosharp Safety

Th’ associates and copartners of our loss

4.2. Microscope operation

Lye thus astonisht on th’ oblivious Pool,

4.3. OTKB user interface

And call them not to share with us their part

4.3.1. Position monitor

In this unhappy Mansion, or once more

4.3.2. X/Y scan

With rallied Arms to try what may be yet

5. Experimental Procedure: Calibration and
Statistical Mechanics Measurements

Regaind in Heav’n, or what more lost in Hell?”

5.1. Equipartition and (optional) Stokes Drag

5.2. Stuck bead calibration of QPD voltage

5.3. Analysis

5.3.1. Boltzmann’s constant from equipartition data

5.3.2. PSD method of measuring Boltzmann’s constant

6. Experimental Procedure: Biological
measurements

6.1. Strength of the actin-myosin molecular motor
and intracellular transport of vesicles in onion cells

6.2. Other measurements

6.2.1. Strength and speed of the E. coli flaggelar motor

6.2.2. DNA spring constant

7. Suggested theoretical topics

• Motion at low Reynolds number

• Statistics of Brownian motion [Einstein, 1905;
Wang and Uhlenbeck, 1945]

• Electrodynamic fields in matter

• Physics of diode lasers

• Energetics of molecular motors

• Worm-like chain model of DNA (enthalpy and en-
tropy)
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APPENDIX A: SAMPLE PREPARATION
PROCEDURES

1. Silica microspheres

2. Onion cells
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